-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
134 lines (120 loc) · 4.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
from mmcv.parallel import MMDistributedDataParallel, MMDataParallel
from mmcv.runner import (
DistSamplerSeedHook,
EpochBasedRunner,
GradientCumulativeFp16OptimizerHook,
Fp16OptimizerHook,
OptimizerHook,
build_optimizer,
build_runner,
)
from mmdet3d.runner import CustomEpochBasedRunner
from mmdet3d.utils import get_root_logger
from mmdet.core import DistEvalHook, EvalHook
from mmdet.datasets import build_dataloader, build_dataset, replace_ImageToTensor
def train_model(
model,
dataset,
cfg,
distributed=False,
validate=False,
timestamp=None,
):
logger = get_root_logger()
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
data_loaders = [
build_dataloader(
ds,
cfg.data.samples_per_gpu,
cfg.data.workers_per_gpu,
num_gpus=1,
dist=distributed,
seed=cfg.seed,
)
for ds in dataset
]
# put model on gpus
find_unused_parameters = cfg.get("find_unused_parameters", False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
if distributed:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters,
)
else:
model = MMDataParallel(
model.cuda(),
device_ids=[0],
)
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = build_runner(
cfg.runner,
default_args=dict(
model=model,
optimizer=optimizer,
work_dir=cfg.run_dir,
logger=logger,
meta={},
),
)
if hasattr(runner, "set_dataset"):
runner.set_dataset(dataset)
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
# fp16 setting
fp16_cfg = cfg.get("fp16", None)
if fp16_cfg is not None:
if "cumulative_iters" in cfg.optimizer_config:
optimizer_config = GradientCumulativeFp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed
)
else:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed
)
elif distributed and "type" not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
# register hooks
runner.register_training_hooks(
cfg.lr_config,
optimizer_config,
cfg.checkpoint_config,
cfg.log_config,
cfg.get("momentum_config", None),
custom_hooks_config=cfg.get('custom_hooks', None)
)
if isinstance(runner, EpochBasedRunner):
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
# Support batch_size > 1 in validation
val_samples_per_gpu = cfg.data.val.pop("samples_per_gpu", 1)
if val_samples_per_gpu > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.val.pipeline = replace_ImageToTensor(cfg.data.val.pipeline)
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
val_dataloader = build_dataloader(
val_dataset,
samples_per_gpu=val_samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False,
)
eval_cfg = cfg.get("evaluation", {})
eval_cfg["by_epoch"] = cfg.runner["type"] != "IterBasedRunner"
eval_hook = DistEvalHook if distributed else EvalHook
###主要是这一步
runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, [("train", 1)])