Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Short docs #30

Closed
haesleinhuepf opened this issue Oct 10, 2024 · 4 comments
Closed

Short docs #30

haesleinhuepf opened this issue Oct 10, 2024 · 4 comments

Comments

@haesleinhuepf
Copy link
Owner

We need to write a short document about all functions in init.py which have the decorator @register_function. For each function we need a bullet poinnt with a short sentence and below a single line of code demonstrating how the function works.

Examples:

Takes a binary image and draws cuts objects similar to the ImageJ watershed algorithm to produce a label image
nsitk.touching_objects_labeling(binary_image)

Applies Otsu's threshold selection method to an intensity image and returns a binary image.
nsitk.threshold_otsu(image)

Apply a median filter to an image to remove noise while preserving edges.
nsitk.median_filter(image, radius=5)

Now, do this for all the specified functions.

git-bob comment

Copy link

This message was generated by git-bob (version: 0.6.6, model: gpt-4o-2024-08-06, Run details), an experimental AI-based assistant. It can make mistakes and has limitations. Check its messages carefully.

Certainly! Here is a short document covering functions in __init__.py with the decorator @register_function.

  • Apply a median filter to an image to remove noise while preserving edges.

    nsitk.median_filter(image, radius=5)
  • Apply a Gaussian blur to smooth the image.

    nsitk.gaussian_blur(image, sigma=1.0)
  • Applies Otsu's threshold selection method to an intensity image and returns a binary image.

    nsitk.threshold_otsu(image)
  • Computes the signed Maurer distance map of the input image.

    nsitk.signed_maurer_distance_map(binary_image)
  • Performs morphological watershed labeling on the input image.

    nsitk.morphological_watershed(image, markers)
  • Detects edges in the image using Canny edge detection.

    nsitk.canny_edge_detection(image, variance=1.0)
  • Computes the gradient magnitude of an image.

    nsitk.gradient_magnitude(image)
  • Identifies the regional maxima of an image.

    nsitk.regional_maxima(image)
  • Performs Richardson-Lucy deconvolution to restore a blurred image.

    nsitk.richardson_lucy_deconvolution(image, psf, iterations=10)
  • Rescales the intensity of an input image to a specified range.

    nsitk.rescale_intensity(image, output_min=0, output_max=255)
  • Applies the Sobel operator to an image to find edges.

    nsitk.sobel(image)
  • Extracts the black top hat operation of an image, enhances dark features.

    nsitk.black_top_hat(image, radius=5)
  • Enhances the contrast of an image using adaptive histogram equalization.

    nsitk.adaptive_histogram_equalization(image)
  • Denoises an image using curvature flow method.

    nsitk.curvature_flow_denoise(image, timeStep=0.0625)
  • Relabels the components in a label image sequentially.

    nsitk.relabel_component(label_image)
  • Computes the pixel count map of an image.

    nsitk.pixel_count_map(label_image)

Please review and let me know if any further changes are needed!

@haesleinhuepf
Copy link
Owner Author

Also do this for these functions:

  • standard_deviation_filter
  • connected_component_labeling
  • touching_objects_labeling
  • bilateral_filter
  • laplacian_of_gaussian_filter
  • binominal_blur_filter
  • h_maxima
  • white_top_hat
  • adaptive_histogram_equalization
  • label_statistics

git-bob comment

Copy link

This message was generated by git-bob (version: 0.6.6, model: gpt-4o-2024-08-06, Run details), an experimental AI-based assistant. It can make mistakes and has limitations. Check its messages carefully.

Certainly! Here is an updated short document covering the additional functions with the decorator @register_function:

  • Apply a median filter to an image to remove noise while preserving edges.

    nsitk.median_filter(image, radius=5)
  • Apply a Gaussian blur to smooth the image.

    nsitk.gaussian_blur(image, sigma=1.0)
  • Applies Otsu's threshold selection method to an intensity image and returns a binary image.

    nsitk.threshold_otsu(image)
  • Computes the signed Maurer distance map of the input image.

    nsitk.signed_maurer_distance_map(binary_image)
  • Performs morphological watershed labeling on the input image.

    nsitk.morphological_watershed(image, markers)
  • Detects edges in the image using Canny edge detection.

    nsitk.canny_edge_detection(image, variance=1.0)
  • Computes the gradient magnitude of an image.

    nsitk.gradient_magnitude(image)
  • Identifies the regional maxima of an image.

    nsitk.regional_maxima(image)
  • Performs Richardson-Lucy deconvolution to restore a blurred image.

    nsitk.richardson_lucy_deconvolution(image, psf, iterations=10)
  • Rescales the intensity of an input image to a specified range.

    nsitk.rescale_intensity(image, output_min=0, output_max=255)
  • Applies the Sobel operator to an image to find edges.

    nsitk.sobel(image)
  • Extracts the black top hat operation of an image, enhances dark features.

    nsitk.black_top_hat(image, radius=5)
  • Enhances the contrast of an image using adaptive histogram equalization.

    nsitk.adaptive_histogram_equalization(image)
  • Denoises an image using curvature flow method.

    nsitk.curvature_flow_denoise(image, timeStep=0.0625)
  • Relabels the components in a label image sequentially.

    nsitk.relabel_component(label_image)
  • Computes the pixel count map of an image.

    nsitk.pixel_count_map(label_image)
  • Applies a standard deviation filter to an image.

    nsitk.standard_deviation_filter(image)
  • Labels the connected components in a binary image.

    nsitk.connected_component_labeling(binary_image)
  • Labels touching objects in a binary image.

    nsitk.touching_objects_labeling(binary_image)
  • Applies a bilateral filter to smooth the image while preserving edges.

    nsitk.bilateral_filter(image, domainSigma=2.0, rangeSigma=50.0)
  • Applies the Laplacian of Gaussian filter to find edges.

    nsitk.laplacian_of_gaussian_filter(image, sigma=1.0)
  • Applies a binominal blur filter.

    nsitk.binominal_blur_filter(image)
  • Identifies h-maxima of an image, suppressing maxima smaller than h.

    nsitk.h_maxima(image, h=10)
  • Extracts the white top hat operation of an image, enhances light features.

    nsitk.white_top_hat(image, radius=5)
  • Computes basic statistics for labeled object regions in an image.

    nsitk.label_statistics(image, label_image)

Please review and let me know if any further changes are needed!

@haesleinhuepf
Copy link
Owner Author

Added to the code in 3015c82

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant