- To learn more about CenterPose look here
- docker (installation instructions)
- nvidia-docker2 (installation instructions)
NOTE: In case you are using the Hailo Software Suite docker, make sure to run all of the following instructions outside of that docker.
- Build the docker image:
cd hailo_model_zoo/training/centerpose docker build -t centerpose:v0 --build-arg timezone=`cat /etc/timezone` .
the following optional arguments can be passed via --build-arg:timezone
- a string for setting up timezone. E.g. "Asia/Jerusalem"user
- username for a local non-root user. Defaults to 'hailo'.group
- default group for a local non-root user. Defaults to 'hailo'.uid
- user id for a local non-root user.gid
- group id for a local non-root user.
- Start your docker:
docker run --name "your_docker_name" -it --gpus all -u "username" --ipc=host -v /path/to/local/data/dir:/path/to/docker/data/dir centerpose:v0
docker run
create a new docker container.--name <your_docker_name>
name for your container.-it
runs the command interactively.--gpus all
allows access to all GPUs.--ipc=host
sets the IPC mode for the container.-v /path/to/local/data/dir:/path/to/docker/data/dir
maps/path/to/local/data/dir
from the host to the container. You can use this command multiple times to mount multiple directories.centerpose:v0
the name of the docker image.
- Prepare your data:Data is expected to be in coco format, and by default should be in /workspace/data/<dataset_name>.The expected structure is as follows:
/workspace |-- data `-- |-- coco `-- |-- annotations | |-- instances_train2017.json | |-- instances_val2017.json | |-- person_keypoints_train2017.json | |-- person_keypoints_val2017.json | |-- image_info_test-dev2017.json `-- |-- images |---|-- train2017 |---|---|-- *.jpg |---|-- val2017 |---|---|-- *.jpg |---|-- test2017 `---|---|-- *.jpg
The path for the dataset can be configured in the .yaml file, e.g. centerpose/experiments/regnet_fpn.yaml - Training:Configure your model in a .yaml file. We'll use /workspace/centerpose/experiments/regnet_fpn.yaml in this guide.start training with the following command:
cd /workspace/centerpose/tools python -m torch.distributed.launch --nproc_per_node 4 train.py --cfg ../experiments/regnet_fpn.yaml
Where 4 is the number of GPUs used for training.If using a different number, update both this and the used gpus in the .yaml configuration. - Exporting to onnx After training, run the following command:
cd /workspace/centerpose/tools python export.py --cfg ../experiments/regnet_fpn.yaml --TESTMODEL /workspace/out/regnet1_6/model_best.pth
You can generate an HEF file for inference on Hailo-8 from your trained ONNX model.
In order to do so you need a working model-zoo environment.
Choose the corresponding YAML from our networks configuration directory, i.e. hailo_model_zoo/cfg/networks/centerpose_regnetx_1.6gf_fpn.yaml
, and run compilation using the model zoo:
hailomz compile --ckpt coco_pose_regnet1.6_fpn.onnx --calib-path /path/to/calibration/imgs/dir/ --yaml path/to/centerpose_regnetx_1.6gf_fpn.yaml --start-node-names name1 name2 --end-node-names name1
--ckpt
- path to your ONNX file.--calib-path
- path to a directory with your calibration images in JPEG/png format--yaml
- path to your configuration YAML file.--start-node-names
and--end-node-names
- node names for customizing parsing behavior (optional).- The model zoo will take care of adding the input normalization to be part of the model.
Note
More details about YAML files are presented here.