-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_dualbg.py
535 lines (461 loc) · 27.7 KB
/
train_dualbg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import os
from tqdm.auto import tqdm
from modules.tensor_nerf import TensorNeRF
from renderer import *
from utils import *
from torch.optim import lr_scheduler
from torch.utils.tensorboard import SummaryWriter
import datetime
from omegaconf import DictConfig, OmegaConf
import math
from mutils import normalize
from dataLoader import dataset_dict
import sys
import hydra
from omegaconf import OmegaConf
from pathlib import Path
from loguru import logger
import functools
from modules.integral_equirect import IntegralEquirect
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
# torch.autograd.set_detect_anomaly(True)
# from torch.profiler import profile, record_function, ProfilerActivity
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
renderer = chunk_renderer
class SimpleSampler:
def __init__(self, total, batch):
self.total = total
self.batch = batch
self.curr = total
self.ids = None
def nextids(self, batch=None):
batch = self.batch if batch is None else batch
self.curr+=batch
if self.curr + batch > self.total:
self.ids = torch.LongTensor(np.random.permutation(self.total))
self.curr = 0
ids = self.ids[self.curr:self.curr+batch]
return ids, ids
def reconstruction(args):
params = args.model.params
ic(params)
expname = f"{args.dataset[-1].scenedir.split('/')[-1]}_{args.expname}"
ic(expname)
# init dataset
dataset_index = 0
train_datasets = []
test_datasets = []
samplers = []
for dataset_conf in args.dataset:
dataset = dataset_dict[dataset_conf.dataset_name]
stack_norms = dataset_conf.stack_norms if hasattr(args.dataset, 'stack_norms') else False
white_bg = dataset_conf.white_bg if hasattr(args.dataset, 'white_bg') else True
train_dataset = dataset(os.path.join(args.datadir, dataset_conf.scenedir), split='train',
downsample=dataset_conf.downsample_train, is_stack=False, stack_norms=stack_norms, white_bg=white_bg)
test_dataset = dataset(os.path.join(args.datadir, dataset_conf.scenedir), split='test',
downsample=dataset_conf.downsample_train, is_stack=True, white_bg=white_bg, is_testing=True)
train_dataset.near_far = dataset_conf.near_far
trainingSampler = SimpleSampler(train_dataset.all_rays.shape[0], params.batch_size)
train_datasets.append(train_dataset)
test_datasets.append(test_dataset)
samplers.append(trainingSampler)
ndc_ray = dataset_conf.ndc_ray
near_far = train_dataset.near_far
white_bg = train_datasets[dataset_index].white_bg
if args.add_timestamp:
logfolder = f'{args.basedir}/{expname}{datetime.datetime.now().strftime("-%Y%m%d-%H%M%S")}'
else:
logfolder = f'{args.basedir}/{expname}'
logger.add(logfolder + "/{time}.log", level="INFO", rotation="100 MB")
# init log file
os.makedirs(logfolder, exist_ok=True)
os.makedirs(f'{logfolder}/imgs_vis', exist_ok=True)
summary_writer = SummaryWriter(logfolder)
aabb_scale = 1 if not hasattr(args.dataset, "aabb_scale") else args.dataset.aabb_scale
aabb = train_datasets[dataset_index].scene_bbox.to(device) * aabb_scale
tensorf = hydra.utils.instantiate(args.model.arch)(aabb=aabb, near_far=near_far)
if args.ckpt is not None:
# TODO REMOVE
ckpt = torch.load(args.ckpt)
tensorf = TensorNeRF.load(ckpt, args.model.arch, strict=False)
# TODO REMOVE
if args.fixed_bg is not None:
bg_sd = torch.load(args.fixed_bg)
bg_module = IntegralEquirect(
bg_resolution = 1024,
mipbias = 0,
activation = 'exp',
lr = 0.001,
init_val = -1.897,
mul_lr = 0.001,
brightness_lr = 0,
betas = [0.0, 0.0],
mul_betas = [0.9, 0.9],
mipbias_lr = 1e-4,
mipnoise = 0.0
)
bg_module.load_state_dict(bg_sd)
bg_module.lr = 0
bg_module.mul_lr = 0
bg_module.brightness_lr = 0
tensorf.bg_module = bg_module
tensorf = tensorf.to(device)
tensorf.train()
grad_vars = tensorf.get_optparam_groups()
if args.lr_decay_iters > 0:
lr_factor = args.lr_decay_target_ratio**(1/args.lr_decay_iters)
else:
args.lr_decay_iters = params.n_iters
lr_factor = args.lr_decay_target_ratio**(1/params.n_iters)
torch.cuda.empty_cache()
PSNRs,PSNRs_test = [],[0]
ortho_reg_weight = params.ortho_weight
logger.info("initial ortho_reg_weight", ortho_reg_weight)
L1_reg_weight = params.L1_weight_initial
logger.info("initial L1_reg_weight", L1_reg_weight)
TV_weight_density, TV_weight_app = params.TV_weight_density, params.TV_weight_app
tvreg = TVLoss()
logger.info(f"initial TV_weight density: {TV_weight_density} appearance: {TV_weight_app}")
# allrgbs = allrgbs.to(device)
# allrays = allrays.to(device)
# ratio of meters to pixels at a distance of 1 meter
# / train_dataset.img_wh[0]
# with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], with_stack=True, record_shapes=True) as prof:
logger.info(tensorf)
ic(white_bg)
# TODO REMOVE
# if tensorf.bg_module is not None and not white_bg:
# if True:
# pbar = tqdm(range(args.n_bg_iters), miniters=args.progress_refresh_rate, file=sys.stdout)
# # warm up by training bg
# for _ in pbar:
# ray_idx, rgb_idx = trainingSampler.nextids()
# rays_train, rgba_train = allrays[ray_idx], allrgbs[rgb_idx].reshape(-1, allrgbs.shape[-1])
# rgb_train = rgba_train[..., :3]
# if rgba_train.shape[-1] == 4:
# alpha_train = rgba_train[..., 3]
# else:
# alpha_train = None
# roughness = 1e-16*torch.ones(rays_train.shape[0], 1, device=device)
# rgb = tensorf.render_just_bg(rays_train, roughness)
# loss = torch.sqrt((rgb - rgb_train) ** 2 + params.charbonier_eps**2).mean()
# optimizer.zero_grad()
# loss.backward()
# optimizer.step()
# photo_loss = loss.detach().item()
# pbar.set_description(f'psnr={-10.0 * np.log(photo_loss) / np.log(10.0):.04f}')
# tensorf.bg_module.save('test.png')
# TODO REMOVE
tensorf.sampler.update(tensorf.rf, init=True)
if args.ckpt is None:
if tensorf.rf.num_pretrain > 0:
# dparams = tensorf.parameters()
# space_optim = torch.optim.Adam(tensorf.rf.dbasis_mat.parameters(), lr=0.5, betas=(0.9,0.99))
space_optim = torch.optim.Adam(tensorf.parameters(), lr=0.005, betas=(0.9,0.99))
pbar = tqdm(range(tensorf.rf.num_pretrain))
for _ in pbar:
xyz = (torch.rand(20000, 3, device=device)*2-1) * tensorf.rf.aabb[1].reshape(1, 3)
sigma_feat = tensorf.rf.compute_densityfeature(xyz)
# step_size = 0.015
step_size = tensorf.sampler.stepsize
alpha = 1-torch.exp(-sigma_feat * step_size * tensorf.rf.distance_scale)
# ic(alpha.mean(), sigma_feat.mean(), tensorf.rf.distance_scale)
# sigma = 1-torch.exp(-sigma_feat)
# loss = (sigma-torch.rand_like(sigma)*args.start_density).abs().mean()
# target_alpha = (params.start_density+params.start_density*(2*torch.rand_like(alpha)-1))
target_alpha = (params.start_density + 0.1*params.start_density*torch.randn_like(alpha))
# target_alpha = target_alpha.clip(min=params.start_density/2, max=params.start_density*2)
# target_alpha = params.start_density
loss = (alpha-target_alpha).abs().mean()
# loss = (-sigma[mask].clip(max=1).sum() + sigma[~mask].clip(min=1e-8).sum())
space_optim.zero_grad()
loss.backward()
pbar.set_description(f"Mean alpha: {alpha.detach().mean().item():.06f}.")
space_optim.step()
else:
# calculate alpha mean
xyz = torch.rand(100000, 4, device=device)*2-1
xyz[:, 3] *= 0
sigma_feat = tensorf.rf.compute_densityfeature(xyz)
# step_size = 0.015
target_sigma = -math.log(1-params.start_density) / (tensorf.sampler.stepsize * tensorf.rf.distance_scale)
# compute density_shift assume exponential activation
density_shift = math.log(target_sigma) - math.log(sigma_feat.mean().item())
ic(target_sigma, sigma_feat.mean(), density_shift, sigma_feat.mean())
tensorf.rf.density_shift += density_shift
args.field.density_shift = tensorf.rf.density_shift
# tensorf.sampler.mark_untrained_grid(train_dataset.poses, train_dataset.intrinsics)
torch.cuda.empty_cache()
tensorf.sampler.update(tensorf.rf, init=True)
torch.cuda.empty_cache()
xyz = torch.rand(100000, 4, device=device)*2-1
xyz[:, 3] *= 0
sigma_feat = tensorf.rf.compute_densityfeature(xyz)
alpha = 1-torch.exp(-sigma_feat * tensorf.sampler.stepsize * tensorf.rf.distance_scale)
print(f"Mean alpha: {alpha.detach().mean().item():.06f}.")
ic(sigma_feat.mean())
feat = tensorf.rf.compute_appfeature(xyz)
tensorf.model.diffuse_module.calibrate(xyz, normalize(torch.rand_like(xyz[:, :3])), feat)
tensorf.model.brdf.calibrate(feat, tensorf.bg_module.mean_color().detach().mean())
args.model.arch.model.brdf.bias = tensorf.model.brdf.bias
args.model.arch.model.diffuse_module.diffuse_bias = tensorf.model.diffuse_module.diffuse_bias
args.model.arch.model.diffuse_module.roughness_bias = tensorf.model.diffuse_module.roughness_bias
pbar = tqdm(range(params.n_iters), miniters=args.progress_refresh_rate, file=sys.stdout)
def init_optimizer(grad_vars):
# optimizer = torch.optim.Adam(grad_vars, betas=(0.9, 0.999), weight_decay=0, eps=1e-6)
optimizer = torch.optim.Adam(grad_vars, betas=params.betas, eps=params.eps)
if params.lr is not None:
optimizer = torch.optim.Adam(tensorf.parameters(), lr=params.lr, betas=params.betas, eps=params.eps)
else:
optimizer = torch.optim.Adam(grad_vars, betas=params.betas, eps=params.eps, weight_decay=params.weight_decay)
compute_lambda = functools.partial(
learning_rate_decay, lr_init=params.lr_init, lr_final=params.lr_final, max_steps=params.n_iters,
lr_delay_steps=params.lr_delay_steps, lr_delay_mult=params.lr_delay_mult)
scheduler = lr_scheduler.LambdaLR(optimizer, compute_lambda)
return optimizer, scheduler
optimizer, scheduler = init_optimizer(grad_vars)
ori_decay = math.exp(math.log(params.final_ori_lambda / params.ori_lambda) / params.n_iters) if params.ori_lambda > 0 and params.final_ori_lambda is not None else 1
normal_decay = math.exp(math.log(params.final_pred_lambda / params.pred_lambda) / params.n_iters) if params.pred_lambda > 0 and params.final_pred_lambda is not None else 1
ic(ori_decay)
ic(normal_decay)
OmegaConf.save(config=args, f=f'{logfolder}/config.yaml')
num_rays = params.starting_batch_size
prev_n_samples = None
hist_n_samples = None
gt_bg = cv2.imread(args.gt_bg) if args.gt_bg is not None else None
if True:
# with torch.profiler.profile(record_shapes=True, schedule=torch.profiler.schedule(wait=1, warmup=1, active=params.n_iters-1), with_stack=True) as p:
# with torch.autograd.detect_anomaly():
for iteration in pbar:
for dataset_index in range(len(train_datasets)):
tensorf.bg_module.bg_index = dataset_index
optimizer.zero_grad(set_to_none=True)
losses, roughnesses, envmap_regs, diffuse_regs = [],[],[],[]
brdf_regs = []
pred_losses, ori_losses = [], []
TVs = []
trainingSampler = samplers[dataset_index]
train_dataset = train_datasets[dataset_index]
lbatch_size = params.min_batch_size if num_rays < params.min_batch_size else num_rays
num_remaining = lbatch_size
while num_remaining > 0:
lnum_rays = min(num_rays, num_remaining)
num_remaining -= lnum_rays
ray_idx, rgb_idx = trainingSampler.nextids(lnum_rays)
rays_train, rgba_train = train_dataset.all_rays[ray_idx].to(device), train_dataset.all_rgbs[rgb_idx].reshape(-1, train_dataset.all_rgbs.shape[-1]).to(device)
match params.bg_col:
case 'rand':
bg_col = torch.rand(3, device=device)
case 'white':
bg_col = torch.ones((3), device=device)
case 'black':
bg_col = torch.zeros((3), device=device)
case _:
raise Exception(f"Unknown bg col: {params.bg_col}")
if rgba_train.shape[-1] == 4:
rgb_train = rgba_train[:, :3] * rgba_train[:, -1:] + (1 - rgba_train[:, -1:])*bg_col # blend A to RGB
alpha_train = rgba_train[..., 3]
else:
rgb_train = rgba_train
alpha_train = None
gt_normal_map = train_dataset.all_norms[ray_idx].to(device) if train_dataset.stack_norms else None
focal = (train_dataset.focal[0] if ndc_ray else train_dataset.fx)
with torch.cuda.amp.autocast(enabled=args.fp16):
ims, stats = renderer(rays_train, tensorf, gt_normals=gt_normal_map,
keys = ['rgb_map', 'normal_err', 'distortion_loss', 'prediction_loss', 'ori_loss', 'diffuse_reg', 'roughness', 'whole_valid', 'envmap_reg', 'brdf_reg', 'n_samples'],
focal=focal, output_alpha=alpha_train, chunk=num_rays, bg_col=bg_col, is_train=True, ndc_ray=ndc_ray)
n_samples = stats['n_samples']
if n_samples[0] == 0:
continue
prediction_loss = stats['prediction_loss'].sum()
distortion_loss = stats['distortion_loss'].sum()
diffuse_reg = stats['diffuse_reg'].sum()
envmap_reg = stats['envmap_reg'].sum()
brdf_reg = stats['brdf_reg'].sum()
rgb_map = ims['rgb_map']
if not train_dataset.hdr:
rgb_map = rgb_map.clip(max=1)
whole_valid = stats['whole_valid']
if params.charbonier_loss:
loss = torch.sqrt((rgb_map - rgb_train[whole_valid]) ** 2 + params.charbonier_eps**2).sum()
else:
# loss = ((rgb_map - rgb_train[whole_valid]) ** 2).mean()
# loss = F.huber_loss(rgb_map.clip(0, 1), rgb_train[whole_valid], delta=1, reduction='mean')
loss = ((rgb_map.clip(0, 1) - rgb_train[whole_valid].clip(0, 1))**2).sum()
# loss = ((rgb_map.clip(0, 1) - rgb_train[whole_valid].clip(0, 1)).abs()).sum()
norm_err = sum(stats['normal_err']) if type(stats['normal_err']) == list else stats['normal_err'].sum()
# loss = torch.sqrt(F.huber_loss(rgb_map, rgb_train, delta=1, reduction='none') + params.charbonier_eps**2).mean()
# photo_loss = ((rgb_map.clip(0, 1) - rgb_train[whole_valid].clip(0, 1)) ** 2).mean().detach()
photo_loss = ((rgb_map.clip(0, 1) - rgb_train[whole_valid].clip(0, 1))**2).mean().detach()
ori_loss = stats['ori_loss'].sum()
# adjust number of rays
# need to store mean ratios if I have any hope of stabilizing this
mean_samples = n_samples
ratio = int(whole_valid.sum()) / mean_samples[0]
mean_ratio = ratio if prev_n_samples is None else min(0.1*ratio + 0.9*prev_n_samples, ratio)
prev_n_samples = mean_ratio
num_rays = int(mean_ratio * params.target_num_samples + 1)
tensorf.model.update_n_samples(n_samples[1:])
# tensorf.eval_batch_size = num_rays // 4
# rays_remaining -= rgb_map.shape[0]
# rays_train = rays_train[~whole_valid]
# rgb_train = rgb_train[~whole_valid]
# if gt_normal_map is not None:
# gt_normal_map = gt_normal_map[~whole_valid]
# loss
# ori_lambda = params.ori_lambda if iteration > 1000 else params.ori_lambda * iteration / 1000
# pred_lambda = params.pred_lambda if iteration > 500 else params.pred_lambda * iteration / 500
ori_lambda = params.ori_lambda
pred_lambda = params.pred_lambda
# ic(pred_lambda, ori_lambda, loss,
# params.distortion_lambda*distortion_loss,
# ori_lambda*ori_loss,
# params.envmap_lambda * (envmap_reg-0.05).clip(min=0),
# params.diffuse_lambda * diffuse_reg,
# params.brdf_lambda * brdf_reg,
# pred_lambda * prediction_loss)
total_loss = loss + \
params.distortion_lambda*distortion_loss + \
ori_lambda*ori_loss + \
params.envmap_lambda * (envmap_reg-0.05).clip(min=0) + \
params.diffuse_lambda * diffuse_reg + \
params.brdf_lambda * brdf_reg + \
pred_lambda * prediction_loss + \
params.normal_err_lambda * norm_err
# if tensorf.visibility_module is not None:
# pass
# if iteration % 1 == 0 and iteration > 250:
# # if iteration < 100 or iteration % 1000 == 0:
# if iteration % 250 == 0 and iteration < 2000:
# tensorf.init_vis_module()
# torch.cuda.empty_cache()
# else:
# tensorf.compute_visibility_loss(params.N_visibility_rays)
if ortho_reg_weight > 0:
loss_reg = tensorf.rf.vector_comp_diffs()
total_loss += ortho_reg_weight*loss_reg
summary_writer.add_scalar('train/reg', loss_reg.detach().item(), global_step=iteration)
if L1_reg_weight > 0:
loss_reg_L1 = tensorf.rf.density_L1()
total_loss += L1_reg_weight*loss_reg_L1
summary_writer.add_scalar('train/reg_l1', loss_reg_L1.detach().item(), global_step=iteration)
loss_tv = 0
if TV_weight_density>0:
TV_weight_density *= lr_factor
loss_tv = tensorf.rf.TV_loss_density(tvreg) * TV_weight_density
summary_writer.add_scalar('train/reg_tv_density', loss_tv.detach().item(), global_step=iteration)
if TV_weight_app>0:
TV_weight_app *= lr_factor
loss_tv = loss_tv + tensorf.rf.TV_loss_app(tvreg)*TV_weight_app
summary_writer.add_scalar('train/reg_tv_app', loss_tv.detach().item(), global_step=iteration)
if params.TV_weight_bg > 0:
loss_tv = loss_tv + params.TV_weight_bg*tensorf.bg_module.tv_loss()
total_loss = total_loss + loss_tv
total_loss = total_loss / lbatch_size
total_loss.backward()
photo_loss = photo_loss.detach().item()
TVs.append(float(loss_tv))
ori_losses.append(params.ori_lambda * ori_loss.detach().item())
pred_losses.append(params.pred_lambda * prediction_loss.detach().item())
losses.append(total_loss.detach().item())
roughnesses.append(ims['roughness'].mean().detach().item())
diffuse_regs.append(params.diffuse_lambda * diffuse_reg.detach().item() / lbatch_size)
envmap_regs.append(envmap_reg.detach().item())
brdf_regs.append(brdf_reg.detach().item() / lbatch_size)
PSNRs.append(-10.0 * np.log(photo_loss) / np.log(10.0))
# summary_writer.add_scalar('train/PSNR', PSNRs[-1], global_step=iteration)
# summary_writer.add_scalar('train/mse', photo_loss, global_step=iteration)
# summary_writer.add_scalar('train/ori_loss', ori_loss.detach().item(), global_step=iteration)
# summary_writer.add_scalar('train/distortion_loss', distortion_loss.detach().item(), global_step=iteration)
# summary_writer.add_scalar('train/prediction_loss', prediction_loss.detach().item(), global_step=iteration)
# summary_writer.add_scalar('train/diffuse_loss', diffuse_reg.detach().item(), global_step=iteration)
#
# summary_writer.add_scalar('train/lr', list(optimizer.param_groups)[0]['lr'], global_step=iteration)
del ray_idx, rgb_idx, rays_train, rgba_train, gt_normal_map, ims, stats
if params.clip_grad is not None:
torch.nn.utils.clip_grad_norm_(tensorf.parameters(), params.clip_grad)
optimizer.step()
scheduler.step()
params.ori_lambda *= ori_decay
params.pred_lambda *= normal_decay
if iteration % args.vis_every == args.vis_every - 1 and args.N_vis!=0:
# tensorf.save(f'{logfolder}/{expname}_{iteration}.th', args.model.arch)
test_res = evaluation(test_dataset,tensorf, args, renderer, f'{logfolder}/imgs_vis/', N_vis=args.N_vis,
prtx=f'{iteration:06d}_{dataset_index}_', white_bg = white_bg, ndc_ray=ndc_ray,
compute_extra_metrics=False, gt_bg=gt_bg)
PSNRs_test = test_res['psnrs']
summary_writer.add_scalar('test/psnr', np.mean(test_res['psnrs']), global_step=iteration)
summary_writer.add_scalar('test/norm_err', np.mean(test_res['norm_errs']), global_step=iteration)
logger.info(f'test_psnr = {float(np.mean(PSNRs_test)):.2f}')
if args.save_often:
tensorf.save(f'{logfolder}/{expname}_{iteration:06d}.th', args.model.arch)
# logger.info the current values of the losses.
if iteration % args.progress_refresh_rate == 0:
desc = f'psnr = {float(np.mean(PSNRs)):.2f}' + \
f' test_psnr = {float(np.mean(PSNRs_test)):.2f}' + \
f' loss = {float(np.sum(losses)):.5f}' + \
f' envmap = {float(np.mean(envmap_regs)):.5f}' + \
f' rough = {float(np.mean(roughnesses)):.5f}' + \
f' brdf = {float(np.sum(brdf_regs)):.5f}' + \
f' nrays = {[num_rays] + tensorf.model.max_retrace_rays}'
# f' tv = {float(np.mean(TVs)):.5f}' + \
# f' ori loss = {float(np.mean(ori_losses) / num_rays):.5f}' + \
# f' pred loss = {float(np.mean(pred_losses) / num_rays):.5f}' + \
# + f' mse = {photo_loss:.6f}'
if tensorf.bg_module is not None:
desc = desc + \
f' mipbias = {float(tensorf.bg_module.mipbias):.1e}'
# f' mul = {float(tensorf.bg_module.mul):.1e}' + \
# f' bright = {float(tensorf.bg_module.brightness):.1e}'
pbar.set_description(desc)
PSNRs = []
if tensorf.check_schedule(iteration, 1):
grad_vars = tensorf.get_optparam_groups()
optimizer, scheduler = init_optimizer(grad_vars)
# new_grad_vars = tensorf.get_optparam_groups()
# for param_group, new_param_group in zip(optimizer.param_groups, new_grad_vars):
# param_group['params'] = new_param_group['params']
# if iteration in update_alphamask_list:
# if reso_cur[0] * reso_cur[1] * reso_cur[2]<256**3:# update volume resolution
# tensorVM.alphaMask = None
# L1_reg_weight = params.L1_weight_rest
# logger.info("continuing L1_reg_weight", L1_reg_weight)
# if not ndc_ray and iteration == update_AlphaMask_list[-1] and args.filter_rays:
# # filter rays outside the bbox
# allrays, allrgbs, mask = tensorf.filtering_rays(allrays, allrgbs, focal)
# trainingSampler = SimpleSampler(allrays.shape[0], params.batch_size)
# p.step()
# p.export_chrome_trace('p.trace')
# prof.export_chrome_trace('trace.json')
tensorf.save(f'{logfolder}/{expname}.th', args.model.arch)
if args.render_train:
os.makedirs(f'{logfolder}/imgs_train_all', exist_ok=True)
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=True)
test_res = evaluation(train_dataset,tensorf, args, renderer, f'{logfolder}/imgs_train_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device, gt_bg=gt_bg)
logger.info(f'======> {expname} test all psnr: {np.mean(test_res["psnrs"])} <========================')
if args.render_test:
os.makedirs(f'{logfolder}/imgs_test_all', exist_ok=True)
test_res = evaluation(test_dataset,tensorf, args, renderer, f'{logfolder}/imgs_test_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device, gt_bg=gt_bg)
summary_writer.add_scalar('test/psnr_all', np.mean(test_res["psnrs"]), global_step=iteration)
logger.info(f'======> {expname} test all psnr: {np.mean(test_res["psnrs"])} <========================')
if args.render_path:
c2ws = test_dataset.render_path
# c2ws = test_dataset.poses
logger.info('========>',c2ws.shape)
os.makedirs(f'{logfolder}/imgs_path_all', exist_ok=True)
evaluation_path(test_dataset,tensorf, c2ws, renderer, f'{logfolder}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device, gt_bg=gt_bg)
@hydra.main(version_base=None, config_path='configs', config_name='default')
def train(cfg: DictConfig):
torch.set_default_dtype(torch.float32)
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
logger.info(cfg.dataset)
logger.info(cfg.model)
cfg.model.arch.rf = cfg.field
reconstruction(cfg)
# reconstruction(args)
if __name__ == '__main__':
train()