-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpriority_dict.py
87 lines (65 loc) · 2.73 KB
/
priority_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from heapq import heapify, heappush, heappop
class priority_dict(dict):
"""Dictionary that can be used as a priority queue.
Keys of the dictionary are items to be put into the queue, and values
are their respective priorities. All dictionary methods work as expected.
The advantage over a standard heapq-based priority queue is
that priorities of items can be efficiently updated (amortized O(1))
using code as 'thedict[item] = new_priority.'
The 'smallest' method can be used to return the object with lowest
priority, and 'pop_smallest' also removes it.
The 'sorted_iter' method provides a destructive sorted iterator.
"""
def __init__(self, *args, **kwargs):
super(priority_dict, self).__init__(*args, **kwargs)
self._rebuild_heap()
def _rebuild_heap(self):
self._heap = [(v, k) for k, v in self.items()]
heapify(self._heap)
def smallest(self):
"""Return the item with the lowest priority.
Raises IndexError if the object is empty.
"""
heap = self._heap
v, k = heap[0]
while k not in self or self[k] != v:
heappop(heap)
v, k = heap[0]
return k, v
def pop_smallest(self):
"""Return the item with the lowest priority and remove it.
Raises IndexError if the object is empty.
"""
heap = self._heap
v, k = heappop(heap)
while k not in self or self[k] != v:
v, k = heappop(heap)
del self[k]
return k, v
def __setitem__(self, key, val):
# We are not going to remove the previous value from the heap,
# since this would have a cost O(n).
super(priority_dict, self).__setitem__(key, val)
if len(self._heap) < 2 * len(self):
heappush(self._heap, (val, key))
else:
# When the heap grows larger than 2 * len(self), we rebuild it
# from scratch to avoid wasting too much memory.
self._rebuild_heap()
def setdefault(self, key, val):
if key not in self:
self[key] = val
return val
return self[key]
def update(self, *args, **kwargs):
# Reimplementing dict.update is tricky -- see e.g.
# http://mail.python.org/pipermail/python-ideas/2007-May/000744.html
# We just rebuild the heap from scratch after passing to super.
super(priority_dict, self).update(*args, **kwargs)
self._rebuild_heap()
def sorted_iter(self):
"""Sorted iterator of the priority dictionary items.
Beware: this will destroy elements as they are returned.
"""
while self:
yield self.pop_smallest()