-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm2bk.py
190 lines (156 loc) · 6.76 KB
/
m2bk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import math
import numpy as np
import cv2 as cv
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from mpl_toolkits.mplot3d import Axes3D
class DatasetHandler:
def __init__(self):
# Define number of frames
self.num_frames = 52
# Set up paths
root_dir_path = os.path.dirname(os.path.realpath(__file__))
self.image_dir = os.path.join(root_dir_path, 'data/rgb')
self.depth_dir = os.path.join(root_dir_path, 'data/depth')
# Set up data holders
self.images = []
self.images_rgb = []
self.depth_maps = []
self.k = np.array([[640, 0, 640],
[0, 480, 480],
[0, 0, 1]], dtype=np.float32)
# Read first frame
self.read_frame()
print("\r" + ' '*20 + "\r", end='')
def read_frame(self):
self._read_depth()
self._read_image()
def _read_image(self):
for i in range(1, self.num_frames + 1):
zeroes = "0" * (5 - len(str(i)))
im_name = "{0}/frame_{1}{2}.png".format(self.image_dir, zeroes, str(i))
self.images.append(cv.imread(im_name, flags=0))
self.images_rgb.append(cv.imread(im_name)[:, :, ::-1])
print ("Data loading: {0}%".format(int((i + self.num_frames) / (self.num_frames * 2 - 1) * 100)), end="\r")
def _read_depth(self):
for i in range(1, self.num_frames + 1):
zeroes = "0" * (5 - len(str(i)))
depth_name = "{0}/frame_{1}{2}.dat".format(self.depth_dir, zeroes, str(i))
depth = np.loadtxt(
depth_name,
delimiter=',',
dtype=np.float64) * 1000.0
self.depth_maps.append(depth)
print ("Data loading: {0}%".format(int(i / (self.num_frames * 2 - 1) * 100)), end="\r")
def visualize_camera_movement(image1, image1_points, image2, image2_points, is_show_img_after_move=False):
image1 = image1.copy()
image2 = image2.copy()
for i in range(0, len(image1_points)):
# Coordinates of a point on t frame
p1 = (int(image1_points[i][0]), int(image1_points[i][1]))
# Coordinates of the same point on t+1 frame
p2 = (int(image2_points[i][0]), int(image2_points[i][1]))
cv.circle(image1, p1, 5, (0, 255, 0), 1)
cv.arrowedLine(image1, p1, p2, (0, 255, 0), 1)
cv.circle(image1, p2, 5, (255, 0, 0), 1)
if is_show_img_after_move:
cv.circle(image2, p2, 5, (255, 0, 0), 1)
if is_show_img_after_move:
return image2
else:
return image1
def visualize_trajectory(trajectory):
# Unpack X Y Z each trajectory point
locX = []
locY = []
locZ = []
# This values are required for keeping equal scale on each plot.
# matplotlib equal axis may be somewhat confusing in some situations because of its various scale on
# different axis on multiple plots
max = -math.inf
min = math.inf
# Needed for better visualisation
maxY = -math.inf
minY = math.inf
for i in range(0, trajectory.shape[1]):
current_pos = trajectory[:, i]
locX.append(current_pos.item(0))
locY.append(current_pos.item(1))
locZ.append(current_pos.item(2))
if np.amax(current_pos) > max:
max = np.amax(current_pos)
if np.amin(current_pos) < min:
min = np.amin(current_pos)
if current_pos.item(1) > maxY:
maxY = current_pos.item(1)
if current_pos.item(1) < minY:
minY = current_pos.item(1)
auxY_line = locY[0] + locY[-1]
if max > 0 and min > 0:
minY = auxY_line - (max - min) / 2
maxY = auxY_line + (max - min) / 2
elif max < 0 and min < 0:
minY = auxY_line + (min - max) / 2
maxY = auxY_line - (min - max) / 2
else:
minY = auxY_line - (max - min) / 2
maxY = auxY_line + (max - min) / 2
# Set styles
mpl.rc("figure", facecolor="white")
plt.style.use("seaborn-whitegrid")
# Plot the figure
fig = plt.figure(figsize=(8, 6), dpi=100)
gspec = gridspec.GridSpec(3, 3)
ZY_plt = plt.subplot(gspec[0, 1:])
YX_plt = plt.subplot(gspec[1:, 0])
traj_main_plt = plt.subplot(gspec[1:, 1:])
D3_plt = plt.subplot(gspec[0, 0], projection='3d')
# Actual trajectory plotting ZX
toffset = 1.06
traj_main_plt.set_title("Autonomous vehicle trajectory (Z, X)", y=toffset)
traj_main_plt.set_title("Trajectory (Z, X)", y=1)
traj_main_plt.plot(locZ, locX, ".-", label="Trajectory", zorder=1, linewidth=1, markersize=4)
traj_main_plt.set_xlabel("Z")
# traj_main_plt.axes.yaxis.set_ticklabels([])
# Plot reference lines
traj_main_plt.plot([locZ[0], locZ[-1]], [locX[0], locX[-1]], "--", label="Auxiliary line", zorder=0, linewidth=1)
# Plot camera initial location
traj_main_plt.scatter([0], [0], s=8, c="red", label="Start location", zorder=2)
traj_main_plt.set_xlim([min, max])
traj_main_plt.set_ylim([min, max])
traj_main_plt.legend(loc=1, title="Legend", borderaxespad=0., fontsize="medium", frameon=True)
# Plot ZY
# ZY_plt.set_title("Z Y", y=toffset)
ZY_plt.set_ylabel("Y", labelpad=-4)
ZY_plt.axes.xaxis.set_ticklabels([])
ZY_plt.plot(locZ, locY, ".-", linewidth=1, markersize=4, zorder=0)
ZY_plt.plot([locZ[0], locZ[-1]], [(locY[0] + locY[-1]) / 2, (locY[0] + locY[-1]) / 2], "--", linewidth=1, zorder=1)
ZY_plt.scatter([0], [0], s=8, c="red", label="Start location", zorder=2)
ZY_plt.set_xlim([min, max])
ZY_plt.set_ylim([minY, maxY])
# Plot YX
# YX_plt.set_title("Y X", y=toffset)
YX_plt.set_ylabel("X")
YX_plt.set_xlabel("Y")
YX_plt.plot(locY, locX, ".-", linewidth=1, markersize=4, zorder=0)
YX_plt.plot([(locY[0] + locY[-1]) / 2, (locY[0] + locY[-1]) / 2], [locX[0], locX[-1]], "--", linewidth=1, zorder=1)
YX_plt.scatter([0], [0], s=8, c="red", label="Start location", zorder=2)
YX_plt.set_xlim([minY, maxY])
YX_plt.set_ylim([min, max])
# Plot 3D
D3_plt.set_title("3D trajectory", y=toffset)
D3_plt.plot3D(locX, locZ, locY, zorder=0)
D3_plt.scatter(0, 0, 0, s=8, c="red", zorder=1)
D3_plt.set_xlim3d(min, max)
D3_plt.set_ylim3d(min, max)
D3_plt.set_zlim3d(min, max)
D3_plt.tick_params(direction='out', pad=-2)
D3_plt.set_xlabel("X", labelpad=0)
D3_plt.set_ylabel("Z", labelpad=0)
D3_plt.set_zlabel("Y", labelpad=-2)
# plt.axis('equal')
D3_plt.view_init(45, azim=30)
plt.tight_layout()
plt.show()