-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathcount_num_of_zeros.c
72 lines (66 loc) · 1.5 KB
/
count_num_of_zeros.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
* Date: 2018-10-06
*
* Description:
* Given an array having 0s followed by 1s, find the number of 0s present.
* For example:
* A: [1, 0, 0], Ans - 2
* A: [1, 1, 0], Ans - 1
*
* Approach:
* Check for special cases - All zeros or all ones in array.
* Use binary search approach and try to find a condition where A[mid] = 1 and
* A[mid + 1] = 0.
*
* Complexity:
* O(logn)
*/
#include "stdio.h"
#include "stdlib.h"
int main() {
int i = 0, left = 0, right = 0, mid = 0;
int n = 0;
int *a = NULL;
printf("Enter number of elements: ");
scanf("%d", &n);
a = (int *)malloc(sizeof(int) * n);
for (i = 0; i < n; i++) {
printf("Enter element[%d]: ", i);
scanf("%d", &a[i]);
}
if (!a[0])
printf("All zeros present in list: %d\n", n);
else if (a[n - 1])
printf("None zero present in list\n");
else {
left = 0;
right = n - 1;
while (left < right) {
mid = (left + right)/2;
if (a[mid] && !a[mid + 1])
break;
else if (a[mid] && a[mid + 1])
left = mid;
else
right = mid;
}
printf("Number of zeros in sorted list of 1 and 0 are: %d\n",
(n - (mid + 1)));
}
return 0;
}
/*
* Output:
* ---------------
* Enter number of elements: 3
* Enter element[0]: 1
* Enter element[1]: 1
* Enter element[2]: 0
* Number of zeros in sorted list of 1 and 0 are: 1
*
* Enter number of elements: 3
* Enter element[0]: 1
* Enter element[1]: 0
* Enter element[2]: 0
* Number of zeros in sorted list of 1 and 0 are: 2
*/