-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathfind_duplicates_in_4k_space.c
70 lines (64 loc) · 1.8 KB
/
find_duplicates_in_4k_space.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/*
* Date: 2018-07-23
*
* Description:
* Given an array with all numbers from 1 to N, where N is at most 32,000. The
* array may have duplicate entries and you do not know what N is. With only
* 4 kilobytes of memory available, how would you print all duplicate elements
* in array.
*
* Approach:
* 4 kilobytes is 2^12 byes or 2^15 bits or 32768.
* As 32768 > 32000 so we can store whole range of inputs in a bit vector. So
* storing each number at respective bit and checking its presence while
* scanning other numbers.
*
* Complexity:
* Time: O(n), n is the number of inputs.
* Space: O(max), max is maximum number in array (less than 32000).
*/
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#define MAX_NUM 32000
/*
* Prints all duplicates in an array.
*
* Args:
* a: Array base address;
* n: Number of elements in an array.
* max: Maximum number in array a.
*/
void find_duplicates_in_4k_space(int a[], int n, int max) {
unsigned short int bytes = (max >> 3) + 1;
unsigned int i = 0, by_8 = 0, modulo_8 = 0;
unsigned char *bit_vector = (unsigned char *)malloc(bytes);
memset(bit_vector, 0, bytes);
for (; i < n; i++) {
by_8 = a[i] >> 3;
modulo_8 = a[i] & 0x07;
if (bit_vector[by_8] & (1 << modulo_8))
printf("Duplicate found: %d\n", a[i]);
else
bit_vector[by_8] |= 1 << modulo_8;
}
}
int main() {
int *a = NULL;
int n = 0, i = 0, max = 0;
printf("Enter number of elements in array: ");
scanf("%d", &n);
a = (int *)malloc(sizeof(int) * n);
for (; i < n; i++) {
printf("Enter element[%d]: ", i);
scanf("%d", &a[i]);
if (a[i] > MAX_NUM) {
printf("Invalid number, enter numbers not more than %d\n", MAX_NUM);
return -1;
}
if (max < a[i])
max = a[i];
}
find_duplicates_in_4k_space(a, n, max);
return 0;
}