-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathpaths_with_sum_in_bst.py
73 lines (63 loc) · 2.35 KB
/
paths_with_sum_in_bst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/python
# Date: 2020-10-26
#
# Description:
# Given a binary tree in which each node contains an integer value(which might
# be positive or negative). Design an algorithm to count the number of paths
# that sum to a given value. The path does not need to start or end at root or
# a leaf, but it must go downwards(travelling only from parent nodes to child
# nodes).
#
# Approach:
# This is brute force approach. Consider all nodes in binary tree and count
# number of paths having given pathSum subtree rooted with that node.
#
# Complexity:
# Consider N = number of nodes in tree and d = depth of tree
# From root we will have to check N - 1 nodes below it, similarly for next
# level we has to check N - 3 nodes below it and so on... This can equated as:
# >>> (N - 1) + (N - 3) + (N - 7) + ... d times... + (N - N)
# >>> O(N * d - (1 + 3 + 7 + ... d times ... + N))
# >>> O(N * d - (2^1 - 1 + 2^2 - 1 + 2^3 - 1 .... 2^d - 1))
# >>> O(N * d - N)
# >>> O(N * d)
# >> O(NlogN) time complexity
#
# In case of unbalanced binary trees like skew, complexity can upto O(N^2)
class Node:
def __init__(self, k):
self.k = k
self.left = None
self.right = None
def path_with_given_sum_node(root, total_sum, current_sum):
if root is None:
return 0
total_paths = 0
current_sum += root.k
if current_sum == total_sum:
total_paths += 1
total_paths += path_with_given_sum_node(root.left, total_sum, current_sum)
total_paths += path_with_given_sum_node(root.right, total_sum, current_sum)
return total_paths
def path_with_given_sum(root, target_sum):
if root is None:
return 0
# Paths from root
paths = path_with_given_sum_node(root, target_sum, 0)
# Paths from left and right subtree
left_paths = path_with_given_sum(root.left, target_sum)
right_paths = path_with_given_sum(root.right, target_sum)
return paths + left_paths + right_paths
def main():
root = Node(10)
assert path_with_given_sum(root, 10) == 1
assert path_with_given_sum(root, 20) == 0
root.left = Node(5)
root.right = Node(20)
assert path_with_given_sum(root, 10) == 1
assert path_with_given_sum(root, 15) == 1
assert path_with_given_sum(root, 30) == 1
assert path_with_given_sum(root, 35) == 0
assert path_with_given_sum(root, 30) == 1
assert path_with_given_sum(root, 20) == 1
main()