-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathknapsack.c
101 lines (90 loc) · 3.19 KB
/
knapsack.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
* Date: 2018-07-15
*
* Description:
* Given a Knapsack of a maximum capacity of W and N items each with its own
* value and weight, throw in items inside the Knapsack such that the final
* contents has the maximum value.
*
* Approach:
* Solved using bottom up approach.
* https://www.hackerearth.com/practice/notes/the-knapsack-problem/
*
* Complexity:
* Time: O(n*W), Space(n*W)
* This is polynomial (in fact linear as exponent is 1, n^1) in terms in input
* size n but exponential in terms of W, so this is called pseudo polynomial.
*
* Pseudo polynomial behavior is explained here:
* https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/recitation-videos/MIT6_006F11_rec21.pdf
*/
#include "stdio.h"
#define n 4
#define W 10
// #define n 3
// #define W 50
int max (int A, int B) {
return A > B ? A : B;
}
int knapsack(int weights[], int values[]) {
int knapsack[n + 1][W + 1] = {0};
int item = 0, weight = 0;
// Building table knapsack using bottom up manner.
// knapsack[i][j] is the maximum value that can be obtained by using subset of
// the items 0...i-1 (first i-1) items which weighs at most j pounds.
// As first column row and column of knapsack matrix is used as base condition
// knapsack taken is of size (n + 1) * (W + 1) and current items are accessed
// using item - 1.
for (item = 0; item <= n; item++) {
for (weight = 0; weight <= W; weight++) {
// Base case: value of knapsack matrix will be 0 in 2 cases:
// 1. If there is no item to select, item = 0
// 2. Weight of knapsack is 0, W = 0
if (!item || !weight)
knapsack[item][weight] = 0;
// Current item is selected if current items weight is less than or equal
// to running weight of knapsack.
else if (weights[item - 1] <= weight)
// Take max of 2 things:
// 1. Value for the same weight without this item.
// 2. Value of the current item + value that we could accommodate with
// the remaining weight.
knapsack[item][weight] = max(
knapsack[item - 1][weight],
values[item - 1] + knapsack[item - 1][weight - weights[item - 1]]);
// Current item is not selected if current items weight is more than
// running knapsack weight. In this case carry forward the value without
// current item.
else
knapsack[item][weight] = knapsack[item - 1][weight];
}
}
// Print knapsack matrix.
/*
for (item = 0; item <= n; item++) {
for (weight = 0; weight <= W; weight++) {
printf("%d\t", knapsack[item][weight]);
}
printf("\n");
}
*/
return knapsack[n][W];
}
int main() {
int values[n] = {10, 40, 30, 50};
int wt[n] = {5, 4, 6, 3};
// int values[n] = {60, 100, 120};
// int wt[n] = {10, 20, 30};
printf("Max value with given configuration (W, values and weights) is: %d\n",
knapsack(wt, values));
return 0;
}
/*
* Output:
*
* values = {10, 40, 30, 50}, wt = {5, 4, 6, 3}, n = 4, W = 10
* Max value with given configuration (W, values and weights) is: 90
*
* values = {60, 100, 120}, wt = {10, 20, 30}, n = 3, W = 50
* Max value with given configuration (W, values and weights) is: 220
*/