-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmedian_in_2_sorted_arrays.py
77 lines (60 loc) · 2.21 KB
/
median_in_2_sorted_arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/python
# Date: 2018-09-20
#
# Description:
# Given 2 sorted arrays find overall median of the combined sorted arrays.
#
# Approach:
# Idea is to find points in both array which divides part of smaller array
# + some part of larger array in exactly half of the total size of array. To
# find this point we will use divide and conquer approach on smaller array.
#
# Explained:
# https://www.youtube.com/watch?v=LPFhl65R7ww
# https://www.geeksforgeeks.org/median-two-sorted-arrays-different-sizes-ologminn-m/
#
# Complexity:
# O(log(min(m + n)))
def median_of_2_sorted_arrays(A, B):
"""Finds median from 2 sorted arrays."""
# Keep first array as smaller one.
if len(A) > len(B):
return median_of_2_sorted_arrays(B, A)
x = len(A)
y = len(B)
low = 0
high = x
while low <= high:
partition_x = (low + high) // 2 # Partition array A
# Partition B so that the number of elements on left side of array and B is same as
# the number of elements on right side of array A and B.
partition_y = (x + y + 1) // 2 - partition_x
max_left_x = A[partition_x - 1] if partition_x else float('-inf')
min_right_x = A[partition_x] if partition_x < x else float('inf')
max_left_y = B[partition_y - 1] if partition_y else float('-inf')
min_right_y = B[partition_y] if partition_y < y else float('inf')
# We have divided 2 arrays in exactly half-half partition so now we just
# have to return the middle elements.
if max_left_x <= min_right_y and max_left_y <= min_right_x:
# Odd number of total elements, median is Array[n/2] otherwise it will be
# (Array[n/2] + Array[n/2 + 1])/2
if (x + y) % 2:
return max(max_left_x, max_left_y)
else:
return (
max(max_left_x, max_left_y) + min(min_right_x, min_right_y))/2.0
elif max_left_x > min_right_y:
# Too right move partition point more towards left.
high = partition_x - 1
else:
low = partition_x + 1
raise ValueError('Arrays are not sorted') # Error condition
def main():
A = [3, 5, 10, 11, 17]
B = [9, 13, 20, 21, 23, 27]
print ('Median is: %f' % median_of_2_sorted_arrays(A, B))
if __name__ == '__main__':
main()
# Output:
# -------------
# Median is: 13.000000