-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
binaryTreeMaximumPathSum.cpp
76 lines (64 loc) · 1.76 KB
/
binaryTreeMaximumPathSum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// Source : https://oj.leetcode.com/problems/binary-tree-maximum-path-sum/
// Author : Hao Chen
// Date : 2014-10-10
/**********************************************************************************
*
* Given a binary tree, find the maximum path sum.
*
* The path may start and end at any node in the tree.
*
* For example:
* Given the below binary tree,
*
* 1
* / \
* 2 3
*
* Return 6.
*
*
**********************************************************************************/
#include <iostream>
#include <algorithm>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
//The solution is quite simple can be explained by itself
int maxPathSum(TreeNode *root, int& maxSum ) {
if (NULL == root) return 0;
//get the maxPathSum for both left and right branch
int left = maxPathSum(root->left, maxSum);
int right = maxPathSum(root->right, maxSum);
// The max sum could be one of the following situations:
// 1) root + left
// 2) root + right
// 3) root
// 4) root + left + right
//
// And the whole function need to return the the max of 1) 2) 3)
int val = root->val;
int maxBranch = left > right ? max(left + val, val) : max(right + val, val);
int m = max(left + right + val, maxBranch);
maxSum = max(maxSum, m);
return maxBranch;
}
int maxPathSum(TreeNode *root) {
#define INT_MIN (-2147483647 - 1)
int maxSum = INT_MIN;
maxPathSum(root, maxSum);
return maxSum;
}
int main()
{
TreeNode root(1);
TreeNode left(2);
TreeNode right(3);
root.left = &left;
root.right = &right;
cout << maxPathSum(&root) << endl;
return 0;
}