-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_lincls.py
executable file
·444 lines (368 loc) · 17.1 KB
/
main_lincls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import builtins
import os
import random
import shutil
import time
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from classifiers.mul_classifier import MulClassifier as Classifier
from arch.resnet_cls import *
from absl import flags
from absl import app
FLAGS = flags.FLAGS
flags.DEFINE_bool('evaluate', False, '')
# default params for ModelArts
flags.DEFINE_bool('moxing', True, 'modelarts must use moxing mode to run')
flags.DEFINE_string('train_url', '../moco_v2', 'path to output files(ckpt and log) on S3 or normal filesystem')
flags.DEFINE_string('data_url', '', 'path to datasets only on S3, only need on ModelArts')
flags.DEFINE_string('init_method', '', 'accept default flags of modelarts, nothing to do')
# params for dataset path
flags.DEFINE_string('data_dir', '/cache/dataset', 'path to datasets on S3 or normal filesystem used in dataloader')
# params for workspace folder
flags.DEFINE_string('cache_ckpt_folder', '', 'folder path to ckpt files in /cache, only need on ModelArts')
# params for unsupervised folder
flags.DEFINE_string('unsupervised_folder', '', '')
flags.DEFINE_float('usupv_lr', 0.03, '')
flags.DEFINE_integer('usupv_batch', 256, '')
flags.DEFINE_integer('pretrained_epoch', 200, '')
# params for optimizer #
flags.DEFINE_integer('seed', None, 'seed for initializing training.')
flags.DEFINE_float('init_lr', 30., '')
flags.DEFINE_float('momentum', 0.9, '')
flags.DEFINE_float('wd', 0., '')
flags.DEFINE_integer('batch_size', 256, '')
flags.DEFINE_integer('num_workers', 32, '')
flags.DEFINE_integer('end_epoch', 100, 'total epochs')
flags.DEFINE_list('schedule', [60, 80], 'epochs when lr need drop')
flags.DEFINE_float('lr_decay', 0.1, 'scale factor for lr drop')
flags.DEFINE_enum('decay_method', 'step', ['step', 'cos'], 'default step for moco lincls')
# params for classifier arch #
flags.DEFINE_list('selected_feat_id', [14, 15, 16, 17], '')
flags.DEFINE_string('pool_type', 'avg', '')
# params for resume #
flags.DEFINE_bool('resume', False, '')
flags.DEFINE_integer('resume_epoch', None, '')
# params for hardware
flags.DEFINE_bool('dist', True, 'DistributedDataparallel or no-dist mode, no-dist mode is only for debug')
flags.DEFINE_integer('nodes_num', 1, 'machine num')
flags.DEFINE_integer('ngpu', 4, 'ngpu per node')
flags.DEFINE_integer('world_size', 4, 'FLAGS.nodes_num*FLAGS.ngpu')
flags.DEFINE_integer('node_rank', 0, 'rank of machine, 0 to nodes_num-1')
flags.DEFINE_integer('rank', 0, 'rank of total threads, 0 to FLAGS.world_size-1')
flags.DEFINE_string('master_addr', '127.0.0.1', 'addr for master node')
flags.DEFINE_string('master_port', '2345', 'port for master node')
# params for log and save #
flags.DEFINE_integer('report_freq', 100, '')
flags.DEFINE_integer('save_freq', 10, '')
best_acc1 = 0
def main(argv):
del argv
if FLAGS.seed is not None:
random.seed(FLAGS.seed)
torch.manual_seed(FLAGS.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
# Prepare Workspace Folder #
FLAGS.unsupervised_folder = os.path.join(FLAGS.train_url, 'unsupervised', 'lr-%s_batch-%s'
%(FLAGS.usupv_lr, FLAGS.usupv_batch))
FLAGS.train_url = os.path.join(FLAGS.train_url, 'classification', 'lr-%s_batch-%s'
%(FLAGS.init_lr, FLAGS.batch_size))
FLAGS.cache_ckpt_folder = os.path.join('/cache', 'lr-%s_batch-%s'
%(FLAGS.init_lr, FLAGS.batch_size))
if FLAGS.moxing:
import moxing as mox
if not mox.file.exists(FLAGS.train_url):
mox.file.make_dirs(os.path.join(FLAGS.train_url, 'logs')) # create folder in S3
mox.file.mk_dir(FLAGS.data_dir) # for example: FLAGS.data_dir='/cache/imagenet2012'
mox.file.copy_parallel(FLAGS.data_url, FLAGS.data_dir)
############################
if FLAGS.dist:
if FLAGS.moxing: # if run on modelarts
import moxing as mox
if FLAGS.nodes_num > 1: # if use multi-nodes ddp
master_host = os.environ['BATCH_WORKER_HOSTS'].split(',')[0]
FLAGS.master_addr = master_host.split(':')[0]
FLAGS.master_port = master_host.split(':')[1]
# FLAGS.worldsize will be re-computed follow as FLAGS.ngpu*FLAGS.nodes_num
# FLAGS.rank will be re-computed in main_worker
modelarts_rank = FLAGS.rank # ModelArts receive FLAGS.rank means node_rank
modelarts_world_size = FLAGS.world_size # ModelArts receive FLAGS.world_size means nodes_num
FLAGS.nodes_num = modelarts_world_size
FLAGS.node_rank = modelarts_rank
FLAGS.ngpu = torch.cuda.device_count()
FLAGS.world_size = FLAGS.ngpu * FLAGS.nodes_num
os.environ['MASTER_ADDR'] = FLAGS.master_addr
os.environ['MASTER_PORT'] = FLAGS.master_port
if os.path.exists('tmp.cfg'):
os.remove('tmp.cfg')
FLAGS.append_flags_into_file('tmp.cfg')
mp.spawn(main_worker, nprocs=FLAGS.ngpu, args=())
def main_worker(gpu_rank):
global best_acc1
# Prepare FLAGS #
FLAGS._parse_args(FLAGS.read_flags_from_files(['--flagfile=./tmp.cfg']), True)
FLAGS.mark_as_parsed()
FLAGS.rank = FLAGS.node_rank * FLAGS.ngpu + gpu_rank # rank among FLAGS.world_size
FLAGS.batch_size = FLAGS.batch_size // FLAGS.world_size
FLAGS.num_workers = FLAGS.num_workers // FLAGS.ngpu
# filter string list in flags to target format(int)
tmp = FLAGS.schedule
if isinstance(tmp[0], str):
for i in range(len(tmp)):
tmp[i] = int(tmp[i])
FLAGS.schedule = tmp
tmp = FLAGS.selected_feat_id
if isinstance(tmp[0], str):
for i in range(len(tmp)):
tmp[i] = int(tmp[i])
FLAGS.selected_feat_id = tmp
if FLAGS.moxing:
import moxing as mox
from utils import Log, AverageMeter, ProgressMeter, accuracy, save_ckpt, adjust_learning_rate
############################
# Set Log File #
if FLAGS.moxing:
log = Log(FLAGS.cache_ckpt_folder)
else:
log = Log(FLAGS.train_url)
############################
# Initial Log content #
log.logger.info('Selected feat for lincls: %s'%(FLAGS.selected_feat_id))
log.logger.info('Initialize optimizer: {\'decay_method: %s, batch_size(per GPU):%-4d, init_lr: %-.3f, momentum: %-.3f, weight_decay: %-.5f, lr_sche: %s, total_epoch: %-3d, num_workers(per GPU): %d, world_size: %d, rank:%d\'}'
%(FLAGS.decay_method, FLAGS.batch_size, FLAGS.init_lr, FLAGS.momentum, \
FLAGS.wd, FLAGS.schedule, FLAGS.end_epoch, \
FLAGS.num_workers, FLAGS.world_size, FLAGS.rank))
############################
# suppress printing if not master
if gpu_rank != 0:
def print_pass(*args):
pass
builtins.print = print_pass
# Create DataLoader #
traindir = os.path.join(FLAGS.data_dir, 'train')
valdir = os.path.join(FLAGS.data_dir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=FLAGS.world_size, rank=FLAGS.rank)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=FLAGS.batch_size, shuffle=(train_sampler is None),
num_workers=FLAGS.num_workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=FLAGS.batch_size, shuffle=False,
num_workers=FLAGS.num_workers, pin_memory=True)
nbatch_per_epoch = len(train_loader)
############################
# Create Model #
from classifiers.cls_opt import net_opt_cls
log.logger.info('Selected feat info: %s'%(net_opt_cls))
model = resnet50()
net = Classifier(net_opt_cls)
# log.logger.info(model)
# log.logger.info(net)
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=FLAGS.world_size,
rank=FLAGS.rank)
torch.cuda.set_device(gpu_rank)
model.cuda()
net.cuda()
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[gpu_rank])
net = torch.nn.parallel.DistributedDataParallel(
net, device_ids=[gpu_rank])
############################
# Create Optimizer #
criterion = nn.CrossEntropyLoss().cuda(gpu_rank)
optimizer = torch.optim.SGD(net.parameters(), lr=FLAGS.init_lr,
momentum=FLAGS.momentum,
weight_decay=FLAGS.wd)
############################
# Load Unsupervised Pretrained ckpt #
pretrained_ckpt_path = os.path.join(FLAGS.unsupervised_folder,
'ckpt_%d.pth.tar'%(FLAGS.pretrained_epoch))
if FLAGS.moxing:
mox.file.make_dirs('/cache/unsupervised/')
mox.file.copy(pretrained_ckpt_path, \
os.path.join('/cache/unsupervised', 'ckpt_%d.pth.tar'%(FLAGS.pretrained_epoch)))
pretrained_ckpt_path = os.path.join('/cache/unsupervised/', 'ckpt_%d.pth.tar'%(FLAGS.pretrained_epoch))
pretrained_ckpt = torch.load(pretrained_ckpt_path, map_location=torch.device('cpu'))
log.logger.info("Load unsupervised pretrained ckpt '{}'".format(pretrained_ckpt_path))
log.logger.info('Load unsupervised pretrained ckpt from %3d'%(pretrained_ckpt['epoch']-1))
# rename moco pre-trained keys
pretrained_state_dict = pretrained_ckpt['state_dict']
for k in list(pretrained_state_dict.keys()):
# retain only encoder_q up to before the embedding layer
if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
# remove prefix
# pretrained_state_dict[k[len("module.encoder_q."):]] = pretrained_state_dict[k]
pretrained_state_dict[k.replace('encoder_q.', '')] = pretrained_state_dict[k]
# delete renamed or unused k
del pretrained_state_dict[k]
msg = model.load_state_dict(pretrained_state_dict, strict=False)
print('Missing Keys when load unsupervised pretrained model',
msg.missing_keys)
assert set(msg.missing_keys) == {"module.fc.weight", "module.fc.bias"}
############################
# Resume Checkpoints #
start_epoch = 0
if FLAGS.resume:
ckpt_path = os.path.join(FLAGS.train_url, 'ckpt.pth.tar')
if FLAGS.resume_epoch is not None:
ckpt_path = os.path.join(FLAGS.train_url, 'ckpt_%s.pth.tar'%(FLAGS.resume_epoch))
if FLAGS.moxing:
mox.file.copy(ckpt_path, os.path.join(FLAGS.cache_ckpt_folder, os.path.split(ckpt_path)[-1]))
ckpt_path = os.path.join(FLAGS.cache_ckpt_folder, os.path.split(ckpt_path)[-1])
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
log.logger.info('==> Load ckpt from epoch %3d'%(start_epoch-1))
cudnn.benchmark = True
if FLAGS.evaluate:
assert FLAGS.resume is True
validate(val_loader, model, net, criterion)
return
for epoch in range(start_epoch, FLAGS.end_epoch):
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, log)
# train for one epoch
train(train_loader, model, net, criterion, optimizer, epoch, gpu_rank, log)
# evaluate on validation set
acc1 = validate(val_loader, model, net, criterion, gpu_rank, log)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_ckpt({
'epoch': epoch + 1,
'state_dict': net.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, epoch, FLAGS.save_freq, is_best)
if epoch == start_epoch:
sanity_check(model.state_dict(), pretrained_ckpt_path)
def train(train_loader, model, net, criterion, optimizer, epoch, gpu_rank, log):
from utils import Log, AverageMeter, ProgressMeter, accuracy, save_ckpt, adjust_learning_rate
if FLAGS.moxing:
import moxing as mox
model.eval()
net.train()
losses = AverageMeter('Loss', ':.4e')
acc = []
for i in range(len(FLAGS.selected_feat_id)):
acc.append(AverageMeter('Acc@1', ':6.2f'))
nbatch_per_epoch = len(train_loader)
for batch_idx, (images, target) in enumerate(train_loader):
images = images.cuda(gpu_rank, non_blocking=True)
target = target.cuda(gpu_rank, non_blocking=True)
# compute output
with torch.no_grad():
outputs = model(images)
outputs = net(outputs)
loss_total = None
prec = []
for i in range(len(outputs)):
loss_this = criterion(outputs[i], target)
loss_total = loss_this if (loss_total is None) else (loss_total + loss_this)
prec.append(accuracy(outputs[i].data, target.data))
for i in range(len(outputs)):
acc[i].update(prec[i][0].item(), images.size(0))
losses.update(loss_total.item(), images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
if batch_idx % FLAGS.report_freq == 0:
log.logger.info('==> Iter[%3d][%4d/%4d] loss : %2.5f Acc : %s'%
(epoch, batch_idx, nbatch_per_epoch, loss_total, [prec[i][0].item() for i in range(len(outputs))]))
log.logger.info('==> Training stats: Iter[%3d] loss : %2.5f Acc : %s'%
(epoch, losses.avg, [acc[i].avg for i in range(len(outputs))]))
def validate(val_loader, model, net, criterion, gpu_rank, log):
from utils import Log, AverageMeter, ProgressMeter, accuracy, save_ckpt, adjust_learning_rate
if FLAGS.moxing:
import moxing as mox
model.eval()
net.eval()
losses = AverageMeter('Loss', ':.4e')
acc = []
for i in range(len(FLAGS.selected_feat_id)):
acc.append(AverageMeter('Acc@1', ':6.2f'))
with torch.no_grad():
for batch_idx, (images, target) in enumerate(val_loader):
images = images.cuda(gpu_rank, non_blocking=True)
target = target.cuda(gpu_rank, non_blocking=True)
# compute output
outputs = model(images)
outputs = net(outputs)
loss_total = None
prec = []
for i in range(len(outputs)):
loss_this = criterion(outputs[i], target)
loss_total = loss_this if (loss_total is None) else (loss_total+loss_this)
prec.append(accuracy(outputs[i].data, target.data))
for i in range(len(outputs)):
acc[i].update(prec[i][0].item(), images.size(0))
losses.update(loss_total.item(), images.size(0))
log.logger.info('== Evaluating stats : loss = %3.5f Acc = %s'
%(losses.avg, [acc[i].avg for i in range(len(outputs))]))
if FLAGS.moxing:
mox.file.copy(os.path.join(log.log_path, log.file_name), \
os.path.join(FLAGS.train_url, 'logs', log.file_name))
np_acc = np.array([acc[i].avg for i in range(len(outputs))])
# return max acc among all classifiers
return np.max(np_acc)
def sanity_check(state_dict, pretrained_weights):
"""
Linear classifier should not change any weights other than the linear layer.
This sanity check asserts nothing wrong happens (e.g., BN stats updated).
"""
print("=> loading '{}' for sanity check".format(pretrained_weights))
checkpoint = torch.load(pretrained_weights, map_location="cpu")
state_dict_pre = checkpoint['state_dict']
for k in list(state_dict.keys()):
# only ignore fc layer
if 'fc.weight' in k or 'fc.bias' in k:
continue
# name in pretrained model
k_pre = 'module.encoder_q.' + k[len('module.'):] \
if k.startswith('module.') else 'module.encoder_q.' + k
assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \
'{} is changed in linear classifier training.'.format(k)
print("=> sanity check passed.")
if __name__ == '__main__':
app.run(main)