forked from iotb415/DDP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist1n2g_test.py
122 lines (100 loc) · 4.48 KB
/
mnist1n2g_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import argparse
from random import Random
import torch
import torch.nn as nn
from torch.multiprocessing import Process
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.utils.data
import torch.utils.data.distributed
import torch.optim as optim
from torchvision import datasets, transforms
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=1024, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--init-method', type=str, default='tcp://127.0.0.1:23456')
parser.add_argument('--rank', type=int, default=0)
parser.add_argument('--world-size', type=int, default=2)
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
test_dataset = datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
if args.cuda:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
model.load_state_dict(torch.load('./pth/mnist1n1g.pth'))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def run(rank, size):
print(rank, size)
test()
def init_processes(rank, size, fn, backend='nccl'):
""" Initialize the distributed environment. """
# os.environ['MASTER_ADDR'] = '127.0.0.1'
# os.environ['MASTER_PORT'] = '29500'
dist.init_process_group(init_method=args.init_method, backend=backend, rank=rank, world_size=size, group_name="pytorch_test")
fn(rank, size)
if __name__ == "__main__":
processes = []
for rank in range(args.world_size):
p = Process(target=init_processes, args=(rank, args.world_size, run))
p.start()
processes.append(p)
for p in processes:
p.join()
# 分发数据
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=args.test_batch_size, shuffle=True, sampler=test_sampler,
**kwargs)
test_sampler.set_epoch(1)