diff --git a/README.rst b/README.rst index 0059152..8dae65d 100644 --- a/README.rst +++ b/README.rst @@ -29,7 +29,7 @@ Simple example The following code generates noisy linear data and uses dataprob to find the maximum likelihood estimate of its slope and intercept. -`Run on Google Colab `_. +`Run on Google Colab `_. .. code-block:: python @@ -64,12 +64,12 @@ the maximum likelihood estimate of its slope and intercept. The plots will be: -.. image:: _static/simple-example_plot-summary.svg +.. image:: docs/source/_static/simple-example_plot-summary.svg :align: center :alt: data.plot_summary result :width: 75% -.. image:: _static/simple-example_plot-corner.svg +.. image:: docs/source/_static/simple-example_plot-corner.svg :align: center :alt: data.plot_corner result :width: 75% @@ -138,15 +138,15 @@ self-contained demonstrations in which dataprob is used to analyze various classes of experimental data. The links below launch each notebook in Google Colab: -+ `api-example.ipynb `_: shows various features of the API when analyzing a linear model -+ `linear.ipynb `_: fit a linear model to noisy data (2 parameter, linear) -+ `binding.ipynb `_: a single-site binding interaction (2 parameter, sigmoidal curve) -+ `michaelis-menten.ipynb `_: Michaelis-Menten model of enzyme kinetics (2 parameter, sigmoidal curve) -+ `lagged-exponential.ipynb `_: bacterial growth curve with initial lag phase (3 parameter, exponential) -+ `multi-gaussian.ipynb `_: two overlapping normal distributions (6 parameter, Gaussian) -+ `periodic.ipynb `_: periodic data (3 parameter, sine) -+ `polynomial.ipynb `_: nonlinear data with no obvious form (5 parameter, polynomial) -+ `linear-extrapolation-folding.ipynb `_: protein equilibrium unfolding data (6 parameter, linear embedded in sigmoidal) ++ `api-example.ipynb `_: shows various features of the API when analyzing a linear model ++ `linear.ipynb `_: fit a linear model to noisy data (2 parameter, linear) ++ `binding.ipynb `_: a single-site binding interaction (2 parameter, sigmoidal curve) ++ `michaelis-menten.ipynb `_: Michaelis-Menten model of enzyme kinetics (2 parameter, sigmoidal curve) ++ `lagged-exponential.ipynb `_: bacterial growth curve with initial lag phase (3 parameter, exponential) ++ `multi-gaussian.ipynb `_: two overlapping normal distributions (6 parameter, Gaussian) ++ `periodic.ipynb `_: periodic data (3 parameter, sine) ++ `polynomial.ipynb `_: nonlinear data with no obvious form (5 parameter, polynomial) ++ `linear-extrapolation-folding.ipynb `_: protein equilibrium unfolding data (6 parameter, linear embedded in sigmoidal) Documentation