-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFast Fourier Transformation.py
87 lines (69 loc) · 2.04 KB
/
Fast Fourier Transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as np
import random
import cv2
def universe_noise(image,prob):
f = 300
y0 = 254
def y(t):
y = int(y0 + 2*np.pi *f * t)
return y
'''Importing random sound in image
output = np.zeros(image.shape,np.uint8)
thres = 1 - prob
for i in range(image.shape[0]):
for j in range(image.shape[1]):
rdn = random.random()
if rdn < prob*2:
output[i][j] = 0
elif rdn > thres:
output[i][j] = 255
else:
output[i][j] = image[i][j]
'''
output = np.zeros(image.shape,np.uint8)
for i in range(image.shape[0]):
for j in range(image.shape[1]):
rdn = random.randint(1,100)
if rdn < 30:
#print (output[i][j])
ii = int(i)
jj = int(j)
yy = int(y(ii*(image.shape[1])+jj))
output[i][j] = output[i][j] + yy
#print (output[i][j])
else:
output[i][j] = image[i][j]
return output
#from PIL import Image
#img = Image.open('a.png').convert('L')
#img.save('a-gray.png')
image = cv2.imread('sattelite.png', 0)
noise_img = universe_noise(image,0.05)
cv2.imwrite('photo2.png', noise_img)
import matplotlib.pyplot as plt
im = plt.imread('photo2.png').astype(float)
plt.figure()
plt.imshow(im)
plt.title('Original image')
from scipy import fftpack
im_fft = fftpack.fft2(im)
def plot_spectrum(im_fft):
from matplotlib.colors import LogNorm
# A logarithmic colormap
plt.imshow(np.abs(im_fft), norm=LogNorm(vmin=5))
plt.colorbar()
plt.figure()
plot_spectrum(im_fft)
plt.title('Fourier transform')
keep_fraction = 0.1
im_fft2 = im_fft.copy()
r, c = im_fft2.shape
im_fft2[int(r*keep_fraction):int(r*(1-keep_fraction))] = 0
im_fft2[:, int(c*keep_fraction):int(c*(1-keep_fraction))] = 0
plt.figure()
plot_spectrum(im_fft2)
plt.title('Filtered Spectrum')
im_new = fftpack.ifft2(im_fft2).real
plt.figure()
plt.imshow(im_new)
plt.title('Reconstructed Image')