-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
596 lines (523 loc) · 12.8 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include <algorithm>
#include <cmath>
#include "node.h"
using namespace std;
string category[11];
struct attrSplitVal
{
int attr;
float splitVal;
};
typedef struct attrSplitVal Struct;
/*
* brief: Calculate the information gain of a particular testing attribute
* input: data, attribute number, split value
* output: informationGain
*/
float calculateInfoGain(vector<float> data, int attr, float splitVal)
{
float entries;
entries = data.size();
float leftEntries;
float rightEntries;
vector<float> dataLeft;
vector<float> dataRight;
float totalCount=0;
float fiveCount=0;
float sixCount=0;
float sevenCount=0;
float fiveProb=0;
float sixProb=0;
float sevenProb=0;
float fiveTerm=0;
float sixTerm=0;
float sevenTerm=0;
float lessCount=0;
float lessProb=0;
float greatEQCount=0;
float greatEQProb=0;
float infoContentRoot=0;
float infoContentLeft=0;
float infoContentRight=0;
float gain=0;
for (int i=0+attr; i<entries; i+=12)
{
if(data.at(i)<splitVal)
{
dataLeft.push_back(data.at(i-attr+11));
}
else
{
dataRight.push_back(data.at(i-attr+11));
}
totalCount++;
}
leftEntries = dataLeft.size();
rightEntries = dataRight.size();
for (int i=11; i<entries; i+=12)
{
if(data.at(i)==5)
{
fiveCount++;
}
else if(data.at(i)==6)
{
sixCount++;
}
else if(data.at(i)==7)
{
sevenCount++;
}
}
// Calculate root information content
lessProb=leftEntries/entries;
greatEQProb=rightEntries/entries;
fiveProb=fiveCount/entries;
sixProb=sixCount/entries;
sevenProb=sevenCount/entries;
if(fiveCount==0)
{
fiveTerm=0;
}
else
{
fiveTerm=-fiveProb*log2(fiveProb);
}
if(sixCount==0)
{
sixTerm=0;
}
else
{
sixTerm=-sixProb*log2(sixProb);
}
if(sevenCount==0)
{
sevenTerm=0;
}
else
{
sevenTerm=-sevenProb*log2(sevenProb);
}
infoContentRoot=fiveTerm+sixTerm+sevenTerm;
// Calculate left node information content
fiveCount=0;
sixCount=0;
sevenCount=0;
totalCount=0;
for (int i=0; i<leftEntries; i++)
{
if(dataLeft.at(i)==5)
{
fiveCount++;
}
else if(dataLeft.at(i)==6)
{
sixCount++;
}
else if(dataLeft.at(i)==7)
{
sevenCount++;
}
totalCount++;
}
fiveProb=fiveCount/leftEntries;
sixProb=sixCount/leftEntries;
sevenProb=sevenCount/leftEntries;
if(fiveCount==0)
{
fiveTerm=0;
}
else
{
fiveTerm=-fiveProb*log2(fiveProb);
}
if(sixCount==0)
{
sixTerm=0;
}
else
{
sixTerm=-sixProb*log2(sixProb);
}
if(sevenCount==0)
{
sevenTerm=0;
}
else
{
sevenTerm=-sevenProb*log2(sevenProb);
}
infoContentLeft=fiveTerm+sixTerm+sevenTerm;
// Calculate right node information content
fiveCount=0;
sixCount=0;
sevenCount=0;
totalCount=0;
for (int i=0; i<rightEntries; i++)
{
if(dataRight.at(i)==5)
{
fiveCount++;
}
else if(dataRight.at(i)==6)
{
sixCount++;
}
else if(dataRight.at(i)==7)
{
sevenCount++;
}
totalCount++;
}
fiveProb=fiveCount/rightEntries;
sixProb=sixCount/rightEntries;
sevenProb=sevenCount/rightEntries;
if(fiveCount==0)
{
fiveTerm=0;
}
else
{
fiveTerm=-fiveProb*log2(fiveProb);
}
if(sixCount==0)
{
sixTerm=0;
}
else
{
sixTerm=-sixProb*log2(sixProb);
}
if(sevenCount==0)
{
sevenTerm=0;
}
else
{
sevenTerm=-sevenProb*log2(sevenProb);
}
infoContentRight=fiveTerm+sixTerm+sevenTerm;
// Calculate Information Gain
gain = infoContentRoot - ( lessProb * infoContentLeft ) - ( greatEQProb * infoContentRight );
return gain;
}
/*
* brief: Iterates through testing attributes to find the optimal split value
* input: data
* output: <attribute, split value> pair
*/
attrSplitVal chooseSplit(vector<float> data)
{
attrSplitVal s;
int bestAttr;
float bestSplitVal;
float bestGain=0;
int entries;
entries = data.size();
int counter;
float splitVal;
float gain=0;
for (int i=0; i<11; i++)
{
counter=0;
vector<float> tempAttributeVector;
vector<float> actualAttributeVector;
for(int j=0; j<entries; j+=12)
{
tempAttributeVector.push_back(data.at(i+j));
}
sort(tempAttributeVector.begin(), tempAttributeVector.end());
actualAttributeVector.push_back(tempAttributeVector.at(0));
for(int j=1; j<tempAttributeVector.size(); j++)
{
if(tempAttributeVector.at(j)!=tempAttributeVector.at(j-1))
{
actualAttributeVector.push_back(tempAttributeVector.at(j));
}
}
for(int j=0; j<(entries/12)-1;j++)
{
splitVal=0.5*(tempAttributeVector.at(j)+tempAttributeVector.at(j+1));
gain=calculateInfoGain(data, i, splitVal);
if(gain>bestGain)
{
bestGain=gain;
bestAttr=i;
bestSplitVal=splitVal;
}
}
}
s.attr=bestAttr;
s.splitVal=bestSplitVal;
return s;
}
/*
* brief: Recursive function for constructing decision tree.
* input: data, minLeaf
* output: node
*/
node * DTL(vector<float> data, int minLeaf)
{
attrSplitVal result;
int counter=0;
int fiveCount=0;
int sixCount=0;
int sevenCount=0;
int modeVal=0;
int mode=0;
vector<int> labelCountVec;
float splitVal;
int attrIndex;
vector<float> qualityData;
vector<float> leftData;
vector<float> rightData;
int entries;
entries = data.size();
// Check if yi = yj for all i,j
bool allSameLabel=true;
for(int i=11; i<entries-12; i+=12)
{
if(data.at(i)!=data.at(i+12))
{
allSameLabel=false;
}
qualityData.push_back(data.at(i));
}
qualityData.push_back(data.at(entries-1));
// Checks if xi=xj for all i,j
bool allSameAtt=true;
for(int i=0; i<11; i++)
{
for(int j=0; j<entries-12; j+=12)
{
if(data.at(i+j)!=data.at(i+j+12))
{
allSameAtt=false;
break;
}
}
if(!allSameAtt)
{
break;
}
}
if(qualityData.size()<=minLeaf || allSameLabel==true || allSameAtt==true)
{
// Create new leaf node n
node * myNode=new node;
myNode->setLeafNode(true);
myNode->setData(qualityData,qualityData.size());
for(int i=11; i<entries; i+=12)
{
if(data.at(i)==5)
{
fiveCount++;
}
else if(data.at(i)==6)
{
sixCount++;
}
else if(data.at(i)==7)
{
sevenCount++;
}
}
// calculate whether there is a unique node.
labelCountVec.push_back(fiveCount);
labelCountVec.push_back(sixCount);
labelCountVec.push_back(sevenCount);
int actualMax=0;
int tempMax=0;
int tempMaxIndex=-1;
// Logic for calculating label uniqueness
for(int i=0; i<3; i++)
{
if(labelCountVec.at(i)>tempMax)
{
actualMax=labelCountVec.at(i);
counter=0;
for(int j=0; j<3; j++)
{
if(labelCountVec.at(i)==labelCountVec.at(j))
{
counter++;
}
}
if(counter<=1)
{
tempMax=labelCountVec.at(i);
tempMaxIndex=i;
}
}
}
if(actualMax==tempMax)
{
if(tempMaxIndex==0)
{
myNode->setLabel("5");
}
else if(tempMaxIndex==1)
{
myNode->setLabel("6");
}
else if(tempMaxIndex==2)
{
myNode->setLabel("7");
}
else
{
myNode->setLabel("unknown");
}
}
else
{
myNode->setLabel("unknown");
}
return myNode;
}
result = chooseSplit(data);
attrIndex=result.attr;
splitVal=result.splitVal;
node * myNode=new node;
myNode->setData(qualityData,qualityData.size());
myNode->setSplitVal(splitVal);
myNode->setSplitValAttr(attrIndex);
node * leftNode=new node;
node * rightNode=new node;
//SPLIT DATA
for(int i=attrIndex; i<entries; i+=12)
{
if(data.at(i)<=splitVal)
{
for(int j=i-attrIndex; j<i+12-attrIndex ; j++)
{
leftData.push_back(data.at(j));
}
}
else
{
for(int j=i-attrIndex; j<i+12-attrIndex; j++)
{
rightData.push_back(data.at(j));
}
}
}
leftNode=DTL(leftData,minLeaf);
rightNode=DTL(rightData,minLeaf);
myNode->myLeftNode=leftNode;
myNode->myRightNode=rightNode;
return myNode;
}
/*
* brief: Based on the current split value, assign the current node to the left or right
* input: node, data
* output: attribute label
*/
string predict_DTL(node * myNode, vector<float> data)
{
int attrIndex;
float splitVal;
while(myNode->getLeafNode()==false)
{
attrIndex=myNode->getSplitValAttr();
splitVal=myNode->getSplitVal();
if(data.at(attrIndex)<=splitVal)
{
myNode=myNode->myLeftNode;
}
else
{
myNode=myNode->myRightNode;
}
}
return myNode->getLabel();
}
int main(int argc, char **argv)
{
string input1=argv[1];
string input2=argv[2];
string input3=argv[3];
ifstream inFile;
string tempInput;
float tempFloat;
vector<string> stringData;
vector<float> data;
bool input=true;
int minLeaf=stoi(input3);
node * root = new node;
node * tempNode= new node;
string tempString;
vector<string> testAttrString;
vector<float> testAttrData;
vector<string> output;
int final;
inFile.open(input1);
if (!inFile) {
cout << "Unable to open file";
exit(1);
}
while(input)
{
inFile >> tempInput;
if(!inFile)
{
input=false;
break;
}
stringData.push_back(tempInput);
}
inFile.close();
for(int i=0; i<11; i++)
{
category[i]=stringData.at(i);
}
for(int i=12; i<stringData.size(); i++)
{
tempFloat=stof(stringData.at(i));
data.push_back(tempFloat);
}
input=true;
tempInput="";
inFile.open(input2);
if (!inFile) {
cout << "Unable to open file";
exit(1);
}
while(input)
{
inFile >> tempInput;
if(!inFile)
{
input=false;
break;
}
testAttrString.push_back(tempInput);
}
inFile.close();
for(int i=11; i<testAttrString.size(); i++)
{
tempFloat=stof(testAttrString.at(i));
testAttrData.push_back(tempFloat);
}
root=DTL(data,minLeaf);
for(int i=0; i<testAttrData.size()/11; i++)
{
vector<float> testAttrDataTemp;
for(int j=0; j<11; j++)
{
tempFloat=testAttrData.at(j+11*i);
testAttrDataTemp.push_back(tempFloat);
}
output.push_back(predict_DTL(root, testAttrDataTemp));
}
for(int i=0; i<(testAttrData.size()/11); i++)
{
cout<<output.at(i)<<endl;
}
return 0;
}