-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsensibility.agda
101 lines (90 loc) · 5.18 KB
/
sensibility.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
open import Nat
open import Prelude
open import core
open import judgemental-erase
open import moveerase
module sensibility where
mutual
-- if an action transforms a ê in a synthetic posistion to another ê,
-- they have the same type up erasure of the cursor
actsense-synth : {Γ : ·ctx} {e e' : ê} {e◆ e'◆ : ė} {t t' : τ̇} {α : action} →
erase-e e e◆ →
erase-e e' e'◆ →
Γ ⊢ e => t ~ α ~> e' => t' →
Γ ⊢ e◆ => t →
Γ ⊢ e'◆ => t'
-- in the movement case, we defer to the movement erasure theorem
actsense-synth er er' (SAMove x) wt with erasee-det (moveerasee' er x) er'
... | refl = wt
-- in all the nonzipper cases, the cursor must be at the top for the
-- action rule to apply, so we just build the new derivation
-- directly. no recursion is needed; these are effectively base cases.
actsense-synth _ EETop SADel _ = SEHole
actsense-synth EETop (EEAscR ETTop) SAConAsc wt = SAsc (ASubsume wt TCRefl)
actsense-synth _ EETop (SAConVar p) _ = SVar p
actsense-synth EETop (EEAscR (ETArrL ETTop)) (SAConLam x) SEHole = SAsc (ALam x MAArr (ASubsume SEHole TCRefl))
actsense-synth EETop (EEApR EETop) (SAConApArr x) wt = SAp wt x (ASubsume SEHole TCHole1)
actsense-synth EETop (EEApR EETop) (SAConApOtw x) wt = SAp (SNEHole wt) MAHole (ASubsume SEHole TCRefl)
actsense-synth _ EETop SAConNumlit _ = SNum
actsense-synth EETop (EEPlusR EETop) (SAConPlus1 TCRefl) wt = SPlus (ASubsume wt TCRefl) (ASubsume SEHole TCHole1)
actsense-synth EETop (EEPlusR EETop) (SAConPlus1 TCHole2) wt = SPlus (ASubsume wt TCHole1) (ASubsume SEHole TCHole1)
actsense-synth EETop (EEPlusR EETop) (SAConPlus2 _) wt = SPlus (ASubsume (SNEHole wt) TCHole1) (ASubsume SEHole TCHole1)
actsense-synth EETop (EENEHole EETop) SAConNEHole wt = SNEHole wt
actsense-synth _ EETop (SAFinish x) _ = x
--- zipper cases. in each, we recur on the smaller action derivation
--- following the zipper structure, then reassemble the result
actsense-synth (EEAscL er) (EEAscL er') (SAZipAsc1 x) (SAsc x₁)
with actsense-ana er er' x x₁
... | ih = SAsc ih
actsense-synth (EEAscR x₁) (EEAscR x) (SAZipAsc2 x₂ x₃ x₄ x₅) (SAsc x₆)
with eraset-det x x₃
... | refl = SAsc x₅
actsense-synth er (EEApL er') (SAZipApArr x x₁ x₂ act x₃) wt
with actsense-synth x₁ er' act x₂
... | ih = SAp ih x x₃
actsense-synth (EEApR er) (EEApR er') (SAZipApAna x x₁ x₂) (SAp wt x₃ x₄)
with synthunicity x₁ wt
... | refl with matcharrunicity x x₃
... | refl with actsense-ana er er' x₂ x₄
... | ih = SAp wt x ih
actsense-synth (EEPlusL er) (EEPlusL er') (SAZipPlus1 x) (SPlus x₁ x₂)
with actsense-ana er er' x x₁
... | ih = SPlus ih x₂
actsense-synth (EEPlusR er) (EEPlusR er') (SAZipPlus2 x) (SPlus x₁ x₂)
with actsense-ana er er' x x₂
... | ih = SPlus x₁ ih
actsense-synth er (EENEHole er') (SAZipHole x x₁ act) wt
with actsense-synth x er' act x₁
... | ih = SNEHole ih
-- if an action transforms an ê in an analytic posistion to another ê,
-- they have the same type up erasure of the cursor.
actsense-ana : {Γ : ·ctx} {e e' : ê} {e◆ e'◆ : ė} {t : τ̇} {α : action} →
erase-e e e◆ →
erase-e e' e'◆ →
Γ ⊢ e ~ α ~> e' ⇐ t →
Γ ⊢ e◆ <= t →
Γ ⊢ e'◆ <= t
-- in the subsumption case, punt to the other theorem
actsense-ana er1 er2 (AASubsume x x₁ x₂ x₃) _ = ASubsume (actsense-synth x er2 x₂ x₁) x₃
-- for movement, appeal to the movement-erasure theorem
actsense-ana er1 er2 (AAMove x) wt with erasee-det (moveerasee' er1 x) er2
... | refl = wt
-- in the nonzipper cases, we again know where the hole must be, so we
-- force it and then build the relevant derivation directly.
actsense-ana EETop EETop AADel wt = ASubsume SEHole TCHole1
actsense-ana EETop (EEAscR ETTop) AAConAsc wt = ASubsume (SAsc wt) TCRefl
actsense-ana EETop (EENEHole EETop) (AAConVar x₁ p) wt = ASubsume (SNEHole (SVar p)) TCHole1
actsense-ana EETop (EELam EETop) (AAConLam1 x₁ x₂) wt = ALam x₁ x₂ (ASubsume SEHole TCHole1)
actsense-ana EETop (EENEHole EETop) (AAConNumlit x) wt = ASubsume (SNEHole SNum) TCHole1
actsense-ana EETop EETop (AAFinish x) wt = x
actsense-ana EETop (EENEHole (EEAscR (ETArrL ETTop))) (AAConLam2 x _) (ASubsume SEHole q) =
ASubsume (SNEHole (SAsc (ALam x MAArr (ASubsume SEHole TCRefl)))) q
-- all subsumptions in the right derivation are bogus, because there's no
-- rule for lambdas synthetically
actsense-ana (EELam _) (EELam _) (AAZipLam _ _ _) (ASubsume () _)
-- that leaves only the zipper cases for lambda, where we force the
-- forms and then recurr into the body of the lambda being checked.
actsense-ana (EELam er1) (EELam er2) (AAZipLam x₁ x₂ act) (ALam x₄ x₅ wt)
with matcharrunicity x₂ x₅
... | refl with actsense-ana er1 er2 act wt
... | ih = ALam x₄ x₅ ih