-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathload_data.py
42 lines (30 loc) · 1.06 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from __future__ import division
import os
import numpy as np
import random
from scipy import pi
from scipy.misc import imread, imresize
from itertools import islice
LIMIT = None
DATA_FOLDER = 'driving_dataset'
TRAIN_FILE = os.path.join(DATA_FOLDER, 'data.txt')
# the expected dimension is (tf ordering)
# (None, 66, 200, 3)
def return_data(split=.8):
X = []
y = []
with open(TRAIN_FILE) as fp:
for line in islice(fp, LIMIT):
path, angle = line.strip().split()
full_path = os.path.join(DATA_FOLDER, path)
X.append(full_path)
# using angles from -pi to pi to avoid rescaling the atan in the network
y.append(float(angle) * pi / 180 / 2)
y = np.array(y)
images = np.array([np.float32(imresize(imread(im), size=(66, 200))) / 255 for im in X])
split_index = int(split * len(X))
train_X = images[:split_index]
train_y = y[:split_index]
test_X = images[split_index:]
test_y = y[split_index:]
return np.array(train_X), np.array(train_y), np.array(test_X), np.array(test_y)