forked from NeuromorphicComputing/SoftHebb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathray_search.py
256 lines (210 loc) · 9.37 KB
/
ray_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import argparse
import copy
import pdb
from utils import SEARCH, load_presets, get_device, load_config_dataset, merge_parameter, seed_init_fn, str2bool
from model import load_layers
import torch
from train import run_sup, run_unsup, check_dimension, training_config, run_hybrid
from log import Log
import ray
from ray import tune
from ray.tune.suggest.basic_variant import BasicVariantGenerator
from ray.tune import CLIReporter
from functools import partial
import warnings
import numpy as np
warnings.filterwarnings("ignore")
metric_names = ['train_loss', 'train_acc', 'test_loss', 'test_acc', 'convergence', 'R1']
parser = argparse.ArgumentParser(description='Multi layer Hebbian Training')
parser.add_argument('--preset', choices=load_presets(), default=None,
type=str, help='Preset of hyper-parameters ' +
' | '.join(load_presets()) +
' (default: None)')
parser.add_argument('--dataset-unsup', choices=load_config_dataset(), default='MNIST',
type=str, help='Dataset possibilities ' +
' | '.join(load_config_dataset()) +
' (default: MNIST)')
parser.add_argument('--dataset-sup', choices=load_config_dataset(), default='MNIST',
type=str, help='Dataset possibilities ' +
' | '.join(load_config_dataset()) +
' (default: MNIST)')
parser.add_argument('--training-mode', choices=['successive', 'consecutive', 'simultaneous'], default='successive',
type=str, help='Training possibilities ' +
' | '.join(['successive', 'consecutive', 'simultaneous']) +
' (default: consecutive)')
parser.add_argument('--resume', choices=[None, "all", "without_classifier"], default=None,
type=str, help='Resume Model ' +
' | '.join(["all", "without_classifier"]) +
' (default: None)')
parser.add_argument('--metric', choices=metric_names, default='test_acc',
type=str, help='Primary Metric' +
' | '.join(metric_names) +
' (default: test_acc)')
parser.add_argument('--training-blocks', default=None, nargs='+', type=int,
help='Selection of the blocks that will be trained')
parser.add_argument('--folder-name', default=None, type=str,
help='Name of the experiment')
parser.add_argument('--num-samples', default=1, type=int,
help='number of search into the hparams space')
parser.add_argument('--model-name', default=None, type=str, help='Model Name')
parser.add_argument('--validation-sup', default=False, type=str2bool, metavar='N',
help='')
parser.add_argument('--validation-unsup', default=False, type=str2bool, metavar='N',
help='')
parser.add_argument('--config', default='seed', type=str, metavar='N',
help='')
parser.add_argument('--gpu-exp', default=1, type=int, metavar='N',
help='')
parser.add_argument('--save-model', default=False, action='store_true',
help='Save model checkpoints, configs, etc')
parser.add_argument('--debug', default=False, action='store_true', help='Debug mode (ray local)')
def get_config(config_name):
if config_name == 'regimes':
t_invert_search = [1.25 ** (x - 50) for x in range(100)]
softness_search = ["soft", "softkrotov"]
seeds = [0, 1, 2]
configs = []
for i_softness in softness_search:
for i_t_invert in t_invert_search:
for i_seed in seeds:
i_config = {
f'b{i_layer}': {
"layer": {
't_invert': i_t_invert,
"softness": i_softness,
}
} for i_layer in range(3)}
i_config['dataset_unsup'] = {
'seed': i_seed,
}
configs.append(i_config)
config = tune.grid_search(configs)
elif config_name == 'radius':
config = {
'b0': {
"layer": {
'radius': tune.grid_search([1.25 ** (x - 10) for x in range(27)]),
}
},
'dataset_unsup': {
'seed': tune.grid_search([0, 1, 2]),
}
}
elif config_name == 'one_seed':
config = {
'dataset_unsup': {
'seed': 0
}
}
else:
config = {
'dataset_unsup': {
'seed': tune.grid_search([0, 1, 2, 3])
}
}
print("config_name", config_name)
print("config", config)
return config
def main(params, dataset_sup_config, dataset_unsup_config, blocks, config):
for block_id, block in blocks.items():
if block_id in config:
blocks[block_id] = merge_parameter(block.copy(), config[block_id])
print("blocks", blocks)
if "dataset_unsup" in config:
dataset_unsup_config = merge_parameter(dataset_unsup_config, config['dataset_unsup'])
if "dataset_sup" in config:
dataset_sup_config = merge_parameter(dataset_sup_config, config['dataset_sup'])
if dataset_unsup_config['seed'] is not None:
seed_init_fn(dataset_unsup_config['seed'])
device = get_device()
blocks = check_dimension(blocks, dataset_sup_config)
print("dataset_sup_config, dataset_unsup_config", dataset_sup_config, dataset_unsup_config)
train_config = training_config(blocks, dataset_sup_config, dataset_unsup_config, params.training_mode,
params.training_blocks)
print("train_config", train_config)
model = load_layers(blocks, params.name_model, params.resume)
model.reset()
model = model.to(device)
log = Log(train_config)
for id, config in train_config.items():
if config['mode'] == 'unsupervised':
run_unsup(
config['nb_epoch'],
config['print_freq'],
config['batch_size'],
params.name_model,
dataset_unsup_config,
model,
device,
log.unsup[id],
blocks=config['blocks'],
report=tune.report,
save=params.save_model,
reset=False,
model_dir=tune.session.get_trial_dir(),
)
elif config['mode'] == 'supervised':
print('Running supervised')
run_sup(
config['nb_epoch'],
config['print_freq'],
config['batch_size'],
config['lr'],
params.name_model,
dataset_sup_config,
model,
device,
log.sup[id],
blocks=config['blocks'],
report=tune.report,
save=params.save_model,
model_dir=tune.session.get_trial_dir(),
)
else:
run_hybrid(
config['nb_epoch'],
config['print_freq'],
config['batch_size'],
config['lr'],
params.name_model,
dataset_sup_config,
model,
device,
log.sup[id],
blocks=config['blocks'],
report=tune.report,
save=params.save_model,
model_dir=tune.session.get_trial_dir(),
)
if __name__ == '__main__':
params = parser.parse_args()
config = get_config(params.config)
params.name_model = params.preset if params.model_name is None else params.model_name # TODO change this for better model storage
blocks = load_presets(params.preset)
dataset_sup_config = load_config_dataset(params.dataset_sup, params.validation_sup)
dataset_unsup_config = load_config_dataset(params.dataset_unsup, params.validation_unsup)
if params.debug is True:
# local_mode=True for debugging . It seems there's no need to init ray for these usecase
ray.init(local_mode=True)
reporter = CLIReporter(max_progress_rows=12)
for metric in metric_names:
reporter.add_metric_column(metric)
algo_search = BasicVariantGenerator()
trial_exp = partial(
main, params, dataset_sup_config, dataset_unsup_config, blocks
)
# TODO: use ray for model storing, as it is better aware of the different variants
analysis = tune.run(
trial_exp,
resources_per_trial={
"cpu": 4,
"gpu": max(1 / params.gpu_exp, torch.cuda.device_count() * 4 / 86)
},
metric=params.metric,
mode='min' if params.metric.endswith('loss') else 'max',
search_alg=algo_search,
config=config,
progress_reporter=reporter,
num_samples=params.num_samples,
local_dir=SEARCH,
name=params.folder_name)