forked from ckhui/DL-shopee
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_imagematching.py
55 lines (45 loc) · 2 KB
/
train_imagematching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pandas as pd
from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
from dataset.ImageDataloader import ImageDataLoader
from torch_utils.Config import DEFAULT_CFG
from torch_utils.Runner import train_fn
from model.recognition.ShopeeCurricularFaceModel import ShopeeCurricularFaceModel
from torch_utils.Optimizer import Ranger
from torch_utils.Scheduler import ShopeeScheduler
from torch_utils.Runner import train_fn
import torch
## Setup
csv_train = "./data/shopee-product-matching/train.csv"
image_folder = "./data/shopee-product-matching/train_images/"
## Read Dataframe
df = pd.read_csv(csv_train)
labelencoder= LabelEncoder()
df['label_group'] = labelencoder.fit_transform(df['label_group'])
CFG = DEFAULT_CFG
CFG.BATCH_SIZE = 8
CFG.DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# CFG.DEVICE = 'cpu'
CFG.NUM_WORKERS = 0
CFG.CLASSES = df['label_group'].nunique()
CFG.MODEL_NAME = 'swin_base_patch4_window12_384'
if __name__ == '__main__':
## Read Dataset
dataloader = ImageDataLoader(IMG_SIZE=384)
trainloader = dataloader.BuildImageDataloader(df, image_folder, batch_size=CFG.BATCH_SIZE, num_workers=CFG.NUM_WORKERS, device=CFG.DEVICE)
## Init Model and Training
model = ShopeeCurricularFaceModel(
n_classes = CFG.CLASSES,
model_name = CFG.MODEL_NAME,
fc_dim = CFG.FC_DIM,
margin = CFG.MARGIN,
scale = CFG.SCALE).to(CFG.DEVICE)
optimizer = Ranger(model.parameters(), lr = CFG.SCHEDULER_PARAMS['lr_start'])
# optimizer = torch.optim.Adam(model.parameters(), lr = config.SCHEDULER_PARAMS['lr_start'])
scheduler = ShopeeScheduler(optimizer,**CFG.SCHEDULER_PARAMS)
print("START Training ... ")
torch.save(model.state_dict(),'./weights/{}_cuFace_model_0.pt'.format(CFG.MODEL_NAME))
for i in range(CFG.EPOCHS):
avg_loss_train = train_fn(model, trainloader, optimizer, scheduler, i)
if i%10 == 0:
torch.save(model.state_dict(),'./weights/{}_cuFace_model_{}.pt'.format(CFG.MODEL_NAME, i))