forked from KinWaiCheuk/pytorch_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_AMT.py
64 lines (55 loc) · 2.57 KB
/
train_AMT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Useful github libries
from nnAudio import Spectrogram
from AudioLoader.Music import MAPS
# Libraries related to PyTorch
import torch
from torch.utils.data import DataLoader, random_split
# Libraries related to PyTorch Lightning
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
# custom packages
from tasks.amt import AMT
import models.Models as Model
from utils.text_processing import TextTransform, data_processing
# Libraries related to hydra
import hydra
from hydra.utils import to_absolute_path
from omegaconf import OmegaConf
# For loading the output class ddictionary
import pickle
@hydra.main(config_path="config/amt", config_name="experiment")
def my_app(cfg):
# Loading dataset
train_dataset = MAPS(**cfg.dataset.train)
test_dataset = MAPS(**cfg.dataset.test)
train_dataset, valid_dataset = random_split(train_dataset, [190, 20], generator=torch.Generator().manual_seed(0))
# Create dataloaders
train_loader = DataLoader(train_dataset, **cfg.dataloader.train)
valid_loader = DataLoader(valid_dataset, **cfg.dataloader.valid)
test_dataset = DataLoader(test_dataset, **cfg.dataloader.test)
SpecLayer = getattr(Spectrogram, cfg.spec_layer.type)
spec_layer = SpecLayer(**cfg.spec_layer.args)
# Auto inferring input dimension
if cfg.spec_layer.type=='STFT':
cfg.model.args.input_dim = cfg.spec_layer.args.n_fft//2+1
elif cfg.spec_layer.type=='MelSpectrogram':
cfg.model.args.input_dim = cfg.spec_layer.args.n_mels
model = AMT(getattr(Model, cfg.model.type)(spec_layer, **cfg.model.args),
**cfg.pl)
checkpoint_callback = ModelCheckpoint(monitor="Train/BCE",
filename="{epoch:02d}-{Train/BCE:.2f}",
save_top_k=3,
mode="min",
auto_insert_metric_name=False)
lr_monitor = LearningRateMonitor(logging_interval='step')
logger = TensorBoardLogger(save_dir=".", version=1, name=f'AMT-{cfg.spec_layer.type}-{cfg.model.type}')
trainer = pl.Trainer(gpus=cfg.gpus,
max_epochs=cfg.epochs,
callbacks=[checkpoint_callback, lr_monitor],
logger=logger,
check_val_every_n_epoch=20,
default_root_dir="./results")
trainer.fit(model, train_loader, valid_loader)
if __name__ == "__main__":
my_app()