-
Notifications
You must be signed in to change notification settings - Fork 129
/
train.py
473 lines (368 loc) · 18.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import argparse
import cv2
import torch
import torch.nn as nn
from torch.utils import data, model_zoo
import numpy as np
import pickle
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F
import scipy.misc
import torch.backends.cudnn as cudnn
import sys
import os
import os.path as osp
import pickle
from packaging import version
from model.deeplab import Res_Deeplab
from model.discriminator import FCDiscriminator
from utils.loss import CrossEntropy2d, BCEWithLogitsLoss2d
from dataset.voc_dataset import VOCDataSet, VOCGTDataSet
import matplotlib.pyplot as plt
import random
import timeit
start = timeit.default_timer()
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
MODEL = 'DeepLab'
BATCH_SIZE = 10
ITER_SIZE = 1
NUM_WORKERS = 4
DATA_DIRECTORY = './dataset/VOC2012'
DATA_LIST_PATH = './dataset/voc_list/train_aug.txt'
IGNORE_LABEL = 255
INPUT_SIZE = '321,321'
LEARNING_RATE = 2.5e-4
MOMENTUM = 0.9
NUM_CLASSES = 21
NUM_STEPS = 20000
POWER = 0.9
RANDOM_SEED = 1234
RESTORE_FROM = 'http://vllab1.ucmerced.edu/~whung/adv-semi-seg/resnet101COCO-41f33a49.pth'
SAVE_NUM_IMAGES = 2
SAVE_PRED_EVERY = 5000
SNAPSHOT_DIR = './snapshots/'
WEIGHT_DECAY = 0.0005
LEARNING_RATE_D = 1e-4
LAMBDA_ADV_PRED = 0.1
PARTIAL_DATA=0.5
SEMI_START=5000
LAMBDA_SEMI=0.1
MASK_T=0.2
LAMBDA_SEMI_ADV=0.001
SEMI_START_ADV=0
D_REMAIN=True
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab/DRN")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--iter-size", type=int, default=ITER_SIZE,
help="Accumulate gradients for ITER_SIZE iterations.")
parser.add_argument("--num-workers", type=int, default=NUM_WORKERS,
help="number of workers for multithread dataloading.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--partial-data", type=float, default=PARTIAL_DATA,
help="The index of the label to ignore during the training.")
parser.add_argument("--partial-id", type=str, default=None,
help="restore partial id list")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--is-training", action="store_true",
help="Whether to updates the running means and variances during the training.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--learning-rate-D", type=float, default=LEARNING_RATE_D,
help="Base learning rate for discriminator.")
parser.add_argument("--lambda-adv-pred", type=float, default=LAMBDA_ADV_PRED,
help="lambda_adv for adversarial training.")
parser.add_argument("--lambda-semi", type=float, default=LAMBDA_SEMI,
help="lambda_semi for adversarial training.")
parser.add_argument("--lambda-semi-adv", type=float, default=LAMBDA_SEMI_ADV,
help="lambda_semi for adversarial training.")
parser.add_argument("--mask-T", type=float, default=MASK_T,
help="mask T for semi adversarial training.")
parser.add_argument("--semi-start", type=int, default=SEMI_START,
help="start semi learning after # iterations")
parser.add_argument("--semi-start-adv", type=int, default=SEMI_START_ADV,
help="start semi learning after # iterations")
parser.add_argument("--D-remain", type=bool, default=D_REMAIN,
help="Whether to train D with unlabeled data")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--not-restore-last", action="store_true",
help="Whether to not restore last (FC) layers.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of training steps.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--restore-from-D", type=str, default=None,
help="Where restore model parameters from.")
parser.add_argument("--save-num-images", type=int, default=SAVE_NUM_IMAGES,
help="How many images to save.")
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
return parser.parse_args()
args = get_arguments()
def loss_calc(pred, label, gpu):
"""
This function returns cross entropy loss for semantic segmentation
"""
# out shape batch_size x channels x h x w -> batch_size x channels x h x w
# label shape h x w x 1 x batch_size -> batch_size x 1 x h x w
label = Variable(label.long()).cuda(gpu)
criterion = CrossEntropy2d().cuda(gpu)
return criterion(pred, label)
def lr_poly(base_lr, iter, max_iter, power):
return base_lr*((1-float(iter)/max_iter)**(power))
def adjust_learning_rate(optimizer, i_iter):
lr = lr_poly(args.learning_rate, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1 :
optimizer.param_groups[1]['lr'] = lr * 10
def adjust_learning_rate_D(optimizer, i_iter):
lr = lr_poly(args.learning_rate_D, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1 :
optimizer.param_groups[1]['lr'] = lr * 10
def one_hot(label):
label = label.numpy()
one_hot = np.zeros((label.shape[0], args.num_classes, label.shape[1], label.shape[2]), dtype=label.dtype)
for i in range(args.num_classes):
one_hot[:,i,...] = (label==i)
#handle ignore labels
return torch.FloatTensor(one_hot)
def make_D_label(label, ignore_mask):
ignore_mask = np.expand_dims(ignore_mask, axis=1)
D_label = np.ones(ignore_mask.shape)*label
D_label[ignore_mask] = 255
D_label = Variable(torch.FloatTensor(D_label)).cuda(args.gpu)
return D_label
def main():
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
cudnn.enabled = True
gpu = args.gpu
# create network
model = Res_Deeplab(num_classes=args.num_classes)
# load pretrained parameters
if args.restore_from[:4] == 'http' :
saved_state_dict = model_zoo.load_url(args.restore_from)
else:
saved_state_dict = torch.load(args.restore_from)
# only copy the params that exist in current model (caffe-like)
new_params = model.state_dict().copy()
for name, param in new_params.items():
print name
if name in saved_state_dict and param.size() == saved_state_dict[name].size():
new_params[name].copy_(saved_state_dict[name])
print('copy {}'.format(name))
model.load_state_dict(new_params)
model.train()
model.cuda(args.gpu)
cudnn.benchmark = True
# init D
model_D = FCDiscriminator(num_classes=args.num_classes)
if args.restore_from_D is not None:
model_D.load_state_dict(torch.load(args.restore_from_D))
model_D.train()
model_D.cuda(args.gpu)
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size,
scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)
train_dataset_size = len(train_dataset)
train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size,
scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)
if args.partial_data is None:
trainloader = data.DataLoader(train_dataset,
batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)
trainloader_gt = data.DataLoader(train_gt_dataset,
batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)
else:
#sample partial data
partial_size = int(args.partial_data * train_dataset_size)
if args.partial_id is not None:
train_ids = pickle.load(open(args.partial_id))
print('loading train ids from {}'.format(args.partial_id))
else:
train_ids = range(train_dataset_size)
np.random.shuffle(train_ids)
pickle.dump(train_ids, open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))
train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:])
train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
trainloader = data.DataLoader(train_dataset,
batch_size=args.batch_size, sampler=train_sampler, num_workers=3, pin_memory=True)
trainloader_remain = data.DataLoader(train_dataset,
batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3, pin_memory=True)
trainloader_gt = data.DataLoader(train_gt_dataset,
batch_size=args.batch_size, sampler=train_gt_sampler, num_workers=3, pin_memory=True)
trainloader_remain_iter = enumerate(trainloader_remain)
trainloader_iter = enumerate(trainloader)
trainloader_gt_iter = enumerate(trainloader_gt)
# implement model.optim_parameters(args) to handle different models' lr setting
# optimizer for segmentation network
optimizer = optim.SGD(model.optim_parameters(args),
lr=args.learning_rate, momentum=args.momentum,weight_decay=args.weight_decay)
optimizer.zero_grad()
# optimizer for discriminator network
optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9,0.99))
optimizer_D.zero_grad()
# loss/ bilinear upsampling
bce_loss = BCEWithLogitsLoss2d()
interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')
if version.parse(torch.__version__) >= version.parse('0.4.0'):
interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear', align_corners=True)
else:
interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')
# labels for adversarial training
pred_label = 0
gt_label = 1
for i_iter in range(args.num_steps):
loss_seg_value = 0
loss_adv_pred_value = 0
loss_D_value = 0
loss_semi_value = 0
loss_semi_adv_value = 0
optimizer.zero_grad()
adjust_learning_rate(optimizer, i_iter)
optimizer_D.zero_grad()
adjust_learning_rate_D(optimizer_D, i_iter)
for sub_i in range(args.iter_size):
# train G
# don't accumulate grads in D
for param in model_D.parameters():
param.requires_grad = False
# do semi first
if (args.lambda_semi > 0 or args.lambda_semi_adv > 0 ) and i_iter >= args.semi_start_adv :
try:
_, batch = trainloader_remain_iter.next()
except:
trainloader_remain_iter = enumerate(trainloader_remain)
_, batch = trainloader_remain_iter.next()
# only access to img
images, _, _, _ = batch
images = Variable(images).cuda(args.gpu)
pred = interp(model(images))
pred_remain = pred.detach()
D_out = interp(model_D(F.softmax(pred)))
D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(axis=1)
ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(np.bool)
loss_semi_adv = args.lambda_semi_adv * bce_loss(D_out, make_D_label(gt_label, ignore_mask_remain))
loss_semi_adv = loss_semi_adv/args.iter_size
#loss_semi_adv.backward()
loss_semi_adv_value += loss_semi_adv.data.cpu().numpy()[0]/args.lambda_semi_adv
if args.lambda_semi <= 0 or i_iter < args.semi_start:
loss_semi_adv.backward()
loss_semi_value = 0
else:
# produce ignore mask
semi_ignore_mask = (D_out_sigmoid < args.mask_T)
semi_gt = pred.data.cpu().numpy().argmax(axis=1)
semi_gt[semi_ignore_mask] = 255
semi_ratio = 1.0 - float(semi_ignore_mask.sum())/semi_ignore_mask.size
print('semi ratio: {:.4f}'.format(semi_ratio))
if semi_ratio == 0.0:
loss_semi_value += 0
else:
semi_gt = torch.FloatTensor(semi_gt)
loss_semi = args.lambda_semi * loss_calc(pred, semi_gt, args.gpu)
loss_semi = loss_semi/args.iter_size
loss_semi_value += loss_semi.data.cpu().numpy()[0]/args.lambda_semi
loss_semi += loss_semi_adv
loss_semi.backward()
else:
loss_semi = None
loss_semi_adv = None
# train with source
try:
_, batch = trainloader_iter.next()
except:
trainloader_iter = enumerate(trainloader)
_, batch = trainloader_iter.next()
images, labels, _, _ = batch
images = Variable(images).cuda(args.gpu)
ignore_mask = (labels.numpy() == 255)
pred = interp(model(images))
loss_seg = loss_calc(pred, labels, args.gpu)
D_out = interp(model_D(F.softmax(pred)))
loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, ignore_mask))
loss = loss_seg + args.lambda_adv_pred * loss_adv_pred
# proper normalization
loss = loss/args.iter_size
loss.backward()
loss_seg_value += loss_seg.data.cpu().numpy()[0]/args.iter_size
loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0]/args.iter_size
# train D
# bring back requires_grad
for param in model_D.parameters():
param.requires_grad = True
# train with pred
pred = pred.detach()
if args.D_remain:
pred = torch.cat((pred, pred_remain), 0)
ignore_mask = np.concatenate((ignore_mask,ignore_mask_remain), axis = 0)
D_out = interp(model_D(F.softmax(pred)))
loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
loss_D = loss_D/args.iter_size/2
loss_D.backward()
loss_D_value += loss_D.data.cpu().numpy()[0]
# train with gt
# get gt labels
try:
_, batch = trainloader_gt_iter.next()
except:
trainloader_gt_iter = enumerate(trainloader_gt)
_, batch = trainloader_gt_iter.next()
_, labels_gt, _, _ = batch
D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
ignore_mask_gt = (labels_gt.numpy() == 255)
D_out = interp(model_D(D_gt_v))
loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
loss_D = loss_D/args.iter_size/2
loss_D.backward()
loss_D_value += loss_D.data.cpu().numpy()[0]
optimizer.step()
optimizer_D.step()
print('exp = {}'.format(args.snapshot_dir))
print('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}'.format(i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value, loss_semi_adv_value))
if i_iter >= args.num_steps-1:
print 'save model ...'
torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+str(args.num_steps)+'.pth'))
torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+str(args.num_steps)+'_D.pth'))
break
if i_iter % args.save_pred_every == 0 and i_iter!=0:
print 'taking snapshot ...'
torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+str(i_iter)+'.pth'))
torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+str(i_iter)+'_D.pth'))
end = timeit.default_timer()
print end-start,'seconds'
if __name__ == '__main__':
main()