-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathDeepAccNet-SILENT_v2.py
executable file
·273 lines (221 loc) · 10 KB
/
DeepAccNet-SILENT_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/software/conda/envs/tensorflow/bin/python
import sys
import argparse
import os
from os import listdir
from os.path import isfile, isdir, join
import numpy as np
import pandas as pd
import multiprocessing
import torch
import time
import pandas as pd
import os
import glob
from pyrosetta import *
from pyrosetta.rosetta import *
init(extra_options = "-constant_seed -mute all -read_only_ATOM_entries")
def get_lddt(estogram, mask, center=7, weights=[1,1,1,1]):
# Remove diagonal from the mask.
mask = np.multiply(mask, np.ones(mask.shape)-np.eye(mask.shape[0]))
# Masking the estogram except for the last cahnnel
masked = np.transpose(np.multiply(np.transpose(estogram, [2,0,1]), mask), [1,2,0])
p0 = np.sum(masked[:,:,center], axis=-1)
p1 = np.sum(masked[:,:,center-1]+masked[:,:,center+1], axis=-1)
p2 = np.sum(masked[:,:,center-2]+masked[:,:,center+2], axis=-1)
p3 = np.sum(masked[:,:,center-3]+masked[:,:,center+3], axis=-1)
p4 = np.sum(mask, axis=-1)
# Only work on parts where interaction happen
output = np.divide((weights[0]*p0 + weights[1]*(p0+p1) + weights[2]*(p0+p1+p2) + weights[3]*(p0+p1+p2+p3))/np.sum(weights), p4, where=p4!=0)
return output[p4!=0]
def main():
#####################
# Parsing arguments
#####################
parser = argparse.ArgumentParser(description="Error predictor network",
epilog="v0.0.1")
parser.add_argument("infile",
action="store",
help="path to input silent file")
parser.add_argument("outfile",
action="store",
help="path to output csv")
parser.add_argument("--verbose",
"-v",
action="store_true",
default=False,
help="Activating verbose flag (Default: False)")
parser.add_argument("--binder",
"-b",
action="store_true",
default=False,
help="Make binder related predictions (Assumes chain A to be a binder).")
parser.add_argument("--savehidden",
"-sh", action="store",
type=str,
default="",
help="saves last hidden layer if not empty (Default: "")")
parser.add_argument("--reprocess",
"-r",
action="store_true",
default=False,
help="Do not ignore already processed files")
parser.add_argument("--bert",
"-bert",
action="store_true",
default=False,
help="Run with bert features. Use extractBert.py to generate them. (Default: False)")
parser.add_argument("--features_only",
action="store_true",
help="Just dump features")
parser.add_argument("--prediction_only",
action="store_true",
help="Assumes stored features")
args = parser.parse_args()
################################
# Checking file availabilities #
################################
if not isfile(args.infile):
print("Input silent file does not exist.", file=sys.stderr)
return -1
script_dir = os.path.dirname(__file__)
base = os.path.join(script_dir, "models/")
if not args.bert:
modelpath = join(base, "NatComm_standard")
else:
modelpath = join(base, "NatComm_bert")
if not isdir(modelpath):
print("Model checkpoint does not exist", file=sys.stderr)
return -1
if args.verbose: print("using", modelpath)
feature_folder = args.outfile + "_features/"
if ( args.features_only ):
if ( not os.path.exists(feature_folder) ):
os.mkdir(feature_folder)
if ( args.prediction_only ):
if ( not os.path.exists(feature_folder)):
print("--prediction_only: Features have not been generated. Run with --features_only first or remove this flag.")
return -1
if ( args.features_only and args.prediction_only ):
print("You can't specify both --features_only and --prediction_only at the same time.")
return -1
##############################
# Importing larger libraries #
##############################
script_dir = os.path.dirname(__file__)
sys.path.insert(0, script_dir)
import deepAccNet as dan
if ( not args.features_only ):
model = dan.DeepAccNet(twobody_size = 49 if args.bert else 33)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load(join(modelpath, "best.pkl"), map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
model.to(device)
model.eval()
#############################
# Parse through silent file #
#############################
# loading the silent like this allows us to get names without loading poses
sfd_in = rosetta.core.io.silent.SilentFileData(rosetta.core.io.silent.SilentFileOptions())
sfd_in.read_file(args.infile)
names = sfd_in.tags()
# Open with append
if not isfile(args.outfile) or args.reprocess:
outfile = open(args.outfile, "w")
if args.binder:
outfile.write("global_lddt interface_lddt binder_lddt description\n")
else:
outfile.write("global_lddt description\n")
done = []
else:
outfile = open(args.outfile, "a")
done = pd.read_csv(args.outfile, sep="\s+")["description"].values
if args.savehidden != "" and not isdir(args.savehidden):
os.mkdir(args.savehidden)
with torch.no_grad():
# Parse through poses
pose = core.pose.Pose()
for name in names:
if name in done:
print(name, "is already done.")
continue
print("Working on", name)
per_sample_result = [name]
feature_file = feature_folder + name
# This is where featurization happens
if ( args.prediction_only ):
try:
features = np.load(feature_file + ".npz")
except:
print("Unable to load features for " + name)
continue
else:
if ( args.features_only and os.path.exists( feature_file + ".npz" )):
print(name, "is already done.")
continue
sfd_in.get_structure(name).fill_pose(pose)
features = dan.process_from_pose(pose)
features['blen'] = np.array(pose.conformation().chain_end(1) - pose.conformation().chain_begin(1) + 1)
if ( args.features_only ):
np.savez(feature_file, **features)
continue
# This is where prediction happens
# For the whole
(idx, val), (f1d, bert), f2d, dmy = dan.getData_from_dict(features, bertpath = "")
f1d_g = torch.Tensor(f1d).to(device)
f2d_g = torch.Tensor(np.expand_dims(f2d.transpose(2,0,1), 0)).to(device)
idx_g = torch.Tensor(idx.astype(np.int32)).long().to(device)
val_g = torch.Tensor(val).to(device)
if args.savehidden != "":
estogram, mask, lddt, hidden, dmy = model(idx_g, val_g, f1d_g, f2d_g, output_hidden_layer=True)
hidden = hidden.cpu().detach().numpy()
np.save(join(args.savehidden, name+".npy"), hidden)
else:
estogram, mask, lddt, dmy = model(idx_g, val_g, f1d_g, f2d_g)
lddt = lddt.cpu().detach().numpy()
estogram = estogram.cpu().detach().numpy()
mask = mask.cpu().detach().numpy()
# Store global lddt:
per_sample_result.append(np.mean(lddt))
# Binder related predictions
if args.binder:
# Binder length
blen = features['blen']
plen = estogram.shape[-1]
if blen==plen:
continue
mask2 = np.zeros(mask.shape)
mask2[:blen, blen:] = 1
mask2[blen:, :blen] = 1
interface_lddt = np.mean(get_lddt(estogram.transpose([1,2,0]), np.multiply(mask, mask2)))
per_sample_result.append(interface_lddt)
# Subsample for binder prediction
index = idx[:, 0] < blen
idx = idx[index]
val = val[index]
idx_g = torch.Tensor(idx.astype(np.int32)).long().to(device)
val_g = torch.Tensor(val).to(device)
if args.savehidden != "":
estogram, mask, lddt, hidden, dmy = model(idx_g, val_g, f1d_g[:blen], f2d_g[:, :, :blen, :blen], output_hidden_layer=True)
hidden = hidden.cpu().detach().numpy()
np.save(join(args.savehidden, name+"_b.npy"), hidden)
else:
estogram, mask, lddt, dmy = model(idx_g, val_g, f1d_g[:blen], f2d_g[:, :, :blen, :blen])
lddt = lddt.cpu().detach().numpy()
estogram = estogram.cpu().detach().numpy()
mask = mask.cpu().detach().numpy()
per_sample_result.append(np.mean(lddt))
# Write the result
if args.binder:
r = per_sample_result
outfile.write("%5f %5f %5f %s\n"%(r[1], r[2], r[3], r[0]))
else:
r = per_sample_result
outfile.write("%5f %s\n"%(r[1], r[0]))
outfile.flush()
os.fsync(outfile.fileno())
if ( args.prediction_only ):
os.remove(feature_file + ".npz")
outfile.close()
if __name__== "__main__":
main()