-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathdemo_paper.m
98 lines (77 loc) · 3.09 KB
/
demo_paper.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
function demo_paper()
% demonstration file for SGDLibrary.
%
% This file illustrates how to use this library in case of linear
% regression problem. This demonstrates SGD, SVRG, SQN, and SVRG-LBFGS algorithms.
%
% This file is part of SGDLibrary.
%
% Created by H.Kasai on Oct. 24, 2016
% Modified by H.Kasai on Nov. 03, 2016
clc;
clear;
close all;
%% generate synthetic data
% set number of dimensions
d = 3;
% set number of samples
n = 300;
% generate data
data = logistic_regression_data_generator(n, d);
%% define problem definitions
problem = logistic_regression(data.x_train, data.y_train, data.x_test, data.y_test);
w_opt = problem.calc_solution(1000);
f_opt = problem.cost(w_opt);
fprintf('f_opt: %.24e\n', f_opt);
%% perform algorithms SGD and SVRG
options.w_init = data.w_init;
options.step_init = 0.01;
options.verbose = 2;
options.f_opt = f_opt;
[w_sgd, info_sgd] = sgd(problem, options);
[w_svrg, info_svrg] = svrg(problem, options);
batch_size = 10;
options.batch_size = batch_size;
options.batch_hess_size = batch_size * 20;
[w_sqn, info_sqn] = sag(problem, options);
batch_size = 10;
options.batch_size = batch_size;
options.batch_hess_size = batch_size * 20;
options.step_init = 0.01 * options.batch_size;
options.step_alg = 'fix';
options.sub_mode = 'SVRG-LBFGS';
options.mem_size = 20;
[w_svrg_lbfgs, info_svrg_lbfgs] = slbfgs(problem, options);
algorithms = {'SGD', 'SVRG', 'SQN', 'SVRG-LBFGS'};
w_list = {w_sgd, w_svrg, w_sqn, w_svrg_lbfgs};
info_list = {info_sgd, info_svrg, info_sqn, info_svrg_lbfgs};
%% display cost/optimality gap vs number of gradient evaluations
display_graph('grad_calc_count','cost', algorithms, w_list, info_list);
display_graph('grad_calc_count','optimality_gap', algorithms, w_list, info_list);
% display classification results
y_pred_list = cell(length(algorithms),1);
accuracy_list = cell(length(algorithms),1);
for alg_idx=1:length(algorithms)
if ~isempty(w_list{alg_idx})
p = problem.prediction(w_list{alg_idx});
% calculate accuracy
accuracy_list{alg_idx} = problem.accuracy(p);
fprintf('Classificaiton accuracy: %s: %.4f\n', algorithms{alg_idx}, problem.accuracy(p));
% convert from {1,-1} to {1,2}
p(p==-1) = 2;
p(p==1) = 1;
% predict class
y_pred_list{alg_idx} = p;
else
fprintf('Classificaiton accuracy: %s: Not supported\n', algorithms{alg_idx});
end
end
% convert from {1,-1} to {1,2}
data.y_train(data.y_train==-1) = 2;
data.y_train(data.y_train==1) = 1;
data.y_test(data.y_test==-1) = 2;
data.y_test(data.y_test==1) = 1;
%if plot_flag
display_classification_result(problem, algorithms, w_list, y_pred_list, accuracy_list, data.x_train, data.y_train, data.x_test, data.y_test);
%end
end