-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdepoisoning.py
310 lines (252 loc) · 12.2 KB
/
depoisoning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import yaml
import json
import logging
from pathlib import Path
import shutil
from easydict import EasyDict as edict
import numpy as np
import torch
import copy
import scipy
import time
from torch import nn
import random
import torchvision
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names
from torch.autograd import grad
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter
from utils.general_utils import *
from utils.unlearn_utils import *
from utils.incremental_SVD import *
import datasets
import backbone
# create auxiliary variables
loggerName = Path(__file__).stem
# create logging formatter
logFormatter = logging.Formatter(fmt='%(asctime)s %(name)15s (%(lineno)03d) :: [%(levelname)8s] :: %(message)s')
# create logger
logger = logging.getLogger(loggerName)
logger.setLevel(logging.DEBUG)
# create console handler
consoleHandler = logging.StreamHandler()
consoleHandler.setLevel(logging.DEBUG)
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
# loading config file
cfg_name = sys.argv[1]
stream = open(cfg_name, "r")
try:
cfg = edict(yaml.safe_load(stream))
load_config(cfg)
cfg.work_dir = os.path.dirname(cfg_name)
os.makedirs(cfg.work_dir, exist_ok=True)
# create file handler
fileHandler = logging.FileHandler(f'{cfg.work_dir}/debug.log')
fileHandler.setLevel(logging.DEBUG)
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
tmp = yaml.safe_load(json.dumps(cfg, sort_keys=False, indent=2))
logger.info(yaml.dump(tmp, sort_keys=False))
yaml.dump(tmp, open(f'{cfg.work_dir}/config.yaml', 'w'), sort_keys=False)
except yaml.YAMLError as exc:
print(exc)
stream.close()
if os.path.isdir(f'{cfg.work_dir}/tensorboard/'):
shutil.rmtree(f'{cfg.work_dir}/tensorboard/')
board_writer = SummaryWriter(log_dir=f'{cfg.work_dir}/tensorboard/')
cfg.learned_config = f'exp/learned/{cfg.model}_{cfg.dataset}/poison_{cfg.num_poison}/full/config.yaml'
learn_cfg = edict(yaml.safe_load(open(cfg.learned_config)))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
testset = eval(learn_cfg.dataset.test.name)(root=learn_cfg.dataset.test.root, transform=transform_test, **learn_cfg.dataset.test.params)
test_loader = DataLoader(testset, shuffle=False, num_workers=6, batch_size=256)
learn_cfg.dataset.train.params.data_section = 'clean'
clean_train_noaug = eval(learn_cfg.dataset.train.name)(root=learn_cfg.dataset.train.root, transform=transform_test,
**learn_cfg.dataset.train.params)
clean_train_noaug_loader = DataLoader(clean_train_noaug, shuffle=False, num_workers=6, batch_size=128)
clean_train_aug = eval(learn_cfg.dataset.train.name)(root=learn_cfg.dataset.train.root, transform=transform_train,
**learn_cfg.dataset.train.params)
clean_train_aug_loader = DataLoader(clean_train_aug, shuffle=False, num_workers=6, batch_size=128)
learn_cfg.dataset.train.params.data_section = 'poison'
poison_train_noaug = eval(learn_cfg.dataset.train.name)(root=learn_cfg.dataset.train.root, transform=transform_test,
**learn_cfg.dataset.train.params)
poison_train_noaug_loader = DataLoader(poison_train_noaug, shuffle=False, num_workers=6, batch_size=128)
poison_train_aug = eval(learn_cfg.dataset.train.name)(root=learn_cfg.dataset.train.root, transform=transform_train,
**learn_cfg.dataset.train.params)
poison_train_aug_loader = DataLoader(poison_train_aug, shuffle=False, num_workers=6, batch_size=128)
learn_cfg.dataset.train.params.data_section = 'poison_clean'
poison_clean_train_noaug = eval(learn_cfg.dataset.train.name)(root=learn_cfg.dataset.train.root, transform=transform_test,
**learn_cfg.dataset.train.params)
poison_clean_train_noaug_loader = DataLoader(poison_clean_train_noaug, shuffle=False, num_workers=6, batch_size=128)
# Poisoned model
logger.info('-'*20 + ' Poisoned model ' + '-'*20)
learned_model_dir = os.path.dirname(cfg.learned_config)
ckp = torch.load(f'{learned_model_dir}/checkpoints/ckp.pth')
poisoned_model = eval(learn_cfg.net.backbone)(**learn_cfg.net.params)
poisoned_model.load_state_dict(ckp['model'])
poisoned_model.eval()
poisoned_model.cuda();
print(poisoned_model)
evaluate(poisoned_model, clean_train_noaug_loader, 'Clean train', displayer=logger.info)
evaluate(poisoned_model, poison_train_noaug_loader, 'Poison train', displayer=logger.info)
evaluate(poisoned_model, poison_clean_train_noaug_loader, 'Poison-Clean train', displayer=logger.info)
evaluate(poisoned_model, test_loader, 'Test', displayer=logger.info)
# Baseline
logger.info('-'*20 + f'{bcolors.BOLD_RED} Baseline model {bcolors.RESET}' + '-'*20)
ckp_file = f'{learned_model_dir.replace("full", "clean")}/checkpoints/ckp.pth'
logger.info(ckp_file)
ckp = torch.load(ckp_file)
baseline_model = eval(learn_cfg.net.backbone)(**learn_cfg.net.params)
baseline_model.load_state_dict(ckp['model'])
baseline_model.eval()
baseline_model.cuda();
evaluate(baseline_model, clean_train_noaug_loader, 'Clean train', displayer=logger.info)
evaluate(baseline_model, poison_train_noaug_loader, 'Poison train', displayer=logger.info)
evaluate(baseline_model, poison_clean_train_noaug_loader, 'Poison-Clean train', displayer=logger.info)
evaluate(baseline_model, test_loader, 'Test', displayer=logger.info)
conv_fea_dict, linear_fea_dict = get_feature_dict(cfg.model)
poison_clean_svd_file = f'exp/svd/{cfg.model}_{cfg.dataset}/clean_{cfg.num_poison}.pt'
os.makedirs(f'exp/svd/{cfg.model}_{cfg.dataset}/', exist_ok=True)
if not os.path.isfile(poison_clean_svd_file):
poison_clean_svd = compute_svd(poisoned_model, clean_train_aug_loader, conv_fea_dict, linear_fea_dict, printer=logger.info)
torch.save(poison_clean_svd, poison_clean_svd_file)
else:
poison_clean_svd = torch.load(poison_clean_svd_file)
logger.info('-'*20 + f'{bcolors.BOLD_RED} Compute Projection Matrix {bcolors.RESET}' + '-'*20)
retained_var = cfg.retained_var
P, M = {}, {}
for layer in poison_clean_svd: # ,
k = torch.sum((torch.cumsum(poison_clean_svd[layer]['S'], dim=0) / torch.sum(poison_clean_svd[layer]['S'])) < retained_var)
M_tmp = poison_clean_svd[layer]['U'][:, :k]
P[layer] = torch.mm(M_tmp, M_tmp.t()).to(device).float()
M[layer] = M_tmp.to(device).float()
logger.info(f' - {bcolors.BOLD_RED}Layer:{bcolors.RESET} {layer} - {P[layer].shape} - {retained_var}')
logger.info(f"{k.item()}\t {poison_clean_svd[layer]['S'].shape[0]}\t {100*k.item()/poison_clean_svd[layer]['S'].shape[0]:.06f}")
unlearn_model = backbone.SmallVGG_v1(space=M, **learn_cfg.net.params)
unlearn_model.load_state_dict(poisoned_model.state_dict(), strict=False)
unlearn_model.to(device)
optimizer = optim.SGD(unlearn_model.parameters(), lr=0.02, momentum=0, weight_decay=0)
global_epoch = 0
start_lr = cfg.get('start_lr', 0.1)
end_lr = cfg.get('end_lr', 0.005)
num_epochs = int(cfg.get('num_epochs', 100))
offset = float(cfg.get('offset', 0.1))
loss1_w = float(cfg.get('loss1_w', 1))
loss2_w = float(cfg.get('loss2_w', 1))
wd = float(cfg.get('wd', 0))
alpha = np.exp(np.log(end_lr/start_lr) / num_epochs)
base_lr = start_lr
clean_res, poison_res, poison_clean_res, test_res = [], [], [], []
exp_dir = f'{cfg.work_dir}/results/'
if os.path.isdir(exp_dir):
shutil.rmtree(exp_dir)
os.makedirs(exp_dir, exist_ok=True)
os.makedirs(f'{exp_dir}/ckp/', exist_ok=True)
ce_losses = AverageMeter()
losses1, losses2 = AverageMeter(), AverageMeter()
# try:
for epoch in range(num_epochs):
# Unlearn Training
unlearn_model.train()
unlearn_model.apply(freeze_norm_stats)
for batch_idx, (images, labels) in enumerate(poison_train_aug_loader):
if epoch == 0:
break
labels = labels.to(device)
images = images.to(device)
optimizer.zero_grad()
outputs = unlearn_model(images)
logits = F.softmax(outputs, dim=1)
loss1, loss2 = 0, 0
for j in range(images.shape[0]):
logit = logits[j][labels[j]]
loss1 += -torch.log(1 - ((logit) - offset))
tmp_outputs = torch.cat([outputs[j][:labels[j]], outputs[j][labels[j]+1:]])
tmp_logits = F.softmax(tmp_outputs, dim=0)
tmp_entropy = torch.sum(-tmp_logits*torch.log(tmp_logits + 1e-10))
loss2 += tmp_entropy
loss1 /= images.shape[0]
loss2 /= images.shape[0]
loss = loss1_w*loss1 + loss2_w*loss2
losses1.update(loss1.item(), images.shape[0])
losses2.update(loss2.item(), images.shape[0])
ce_losses.update(loss.item(), images.shape[0])
loss.backward()
with torch.no_grad():
for name, param in unlearn_model.named_parameters():
if name.find('scale') >= 0:
param.data -= (base_lr/10) * param.grad.data
continue
xs = name.split('.')
if xs[-1] == 'bias':
continue
P_name = name
for i in range(20):
P_name = P_name.replace(f'.{i}.', f'[{i}].')
P_name = P_name.replace('.bias', '').replace('.weight', '')
if P_name not in P:
continue
sz = param.data.shape[0]
reg_grd = param.grad.data.add(param.data, alpha=wd)
reg_grd = reg_grd - torch.mm(reg_grd.view(sz,-1), P[P_name]).view(param.size())
lr = base_lr
param.data -= lr * reg_grd
# Evaluate
acc_dict, loss_dict = {}, {}
res = evaluate(unlearn_model, clean_train_noaug_loader, '[Unlearned] - Clean', displayer=logger.info)
loss_dict['Clean'], acc_dict['Clean'] = res
clean_res.append(res)
loss, acc = evaluate(unlearn_model, poison_train_noaug_loader, '[Unlearned] - Poison', displayer=logger.info)
loss_dict['Poison'], acc_dict['Poison'] = loss, acc
poison_res.append((loss, acc))
loss, acc = evaluate(unlearn_model, poison_clean_train_noaug_loader, '[Unlearned] - Poison-Clean', displayer=logger.info)
loss_dict['Poison-Clean'], acc_dict['Poison-Clean'] = loss, acc
poison_clean_res.append((loss, acc))
loss, acc = evaluate(unlearn_model, test_loader, '[Unlearned] - Test', displayer=logger.info)
loss_dict['Test'], acc_dict['Test'] = loss, acc
test_res.append((loss, acc))
bins = np.linspace(-20, 1, 100)
board_writer.add_scalars(f'Unlearn/Accuracy/', acc_dict, epoch)
board_writer.add_scalars(f'Unlearn/Loss/', loss_dict, epoch)
logger.info(f'Epoch: {epoch:02d} - Loss: {ce_losses.avg:.04f} ({losses1.avg:.04f}+{losses2.avg:.04f})' \
f' - LR: {base_lr:.06f}')
checkpoint = {
'epoch': global_epoch,
'lr': base_lr,
}
if cfg.get('save_model', 0) != 0:
checkpoint.update({'model': unlearn_model.state_dict()})
torch.save(checkpoint, f'{exp_dir}/ckp/ckp_{global_epoch:03d}.pt')
logger.info('----------------------------------------------------------')
ce_losses.reset()
losses1.reset()
losses2.reset()
base_lr *= alpha
global_epoch += 1
clean_acc = [x[1] for x in clean_res]
poison_acc = [x[1] for x in poison_res]
poison_clean_acc = [x[1] for x in poison_clean_res]
test_acc = [x[1] for x in test_res]
plt.plot(np.arange(0, len(clean_acc)), clean_acc, label='Clean')
plt.plot(np.arange(0, len(poison_acc)), poison_acc, label='Poison')
plt.plot(np.arange(0, len(poison_clean_acc)), poison_clean_acc, label='Poison-Clean')
plt.plot(np.arange(0, len(test_acc)), test_acc, label='Test')
plt.grid()
plt.legend()
plt.savefig(f'{exp_dir}/accuracies.jpg')
plt.close()
exp_res = {'clean_res': clean_res,
'poison_res': poison_res,
'test_res': test_res,
'poison_clean_res': poison_clean_res,
}
np.save(f'{exp_dir}/exp_res.npy', exp_res)
if test_acc[0] - test_acc[-1] > 5:
break
# except Exception as e:
# print(e)