-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommutative_ring.tex
1979 lines (1697 loc) · 120 KB
/
commutative_ring.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Commutative Ring}
\section{Basic Concepts}
A commutative ring $R$ is a commutative $R$-algebra and accordingly a commutative $\mathbb{Z}$-algebra. Furthermore we have a categorical isomorphism
\[
\mathsf{CRing}\cong \mathbb{Z}\text{-}\mathsf{CAlg}.
\]
\begin{definition}{Noetherian Commutative Ring}{Noetherian_commutative_ring}
Let $R$ be a commutative ring. We say $R$ is \textbf{Noetherian} if one of following conditions holds:
\begin{enumerate}[(i)]
\item $R$ as an $R$-module is Noetherian.
\item Every ideal of $R$ is finitely generated.
\item Every prime ideal of $R$ is finitely generated.
\item Every ascending chain of ideals of $R$ is eventually constant. That is, if $I_1\subseteq I_2\subseteq I_3\subseteq\cdots$ is a chain of ideals of $R$, then there exists $n\in\mathbb{N}$ such that $I_n=I_{n+1}=\cdots$.
\end{enumerate}
\end{definition}
\begin{proposition}{Properties of Noetherian rings}{}
\begin{enumerate}[(i)]
\item If $R$ is a Noetherian ring, then the polynomial ring $R[X_1,X_2,\cdots,X_n]$ is also Noetherian.
\item If $R$ is a Noetherian ring, then the formal power series ring $R[[X_1,X_2,\cdots,X_n]]$ is also Noetherian.
\end{enumerate}
\end{proposition}
\subsection{Ideals}
\begin{definition}{Ideal}{}
Let $R$ be a ring. A subset $I\subseteq R$ is called an \textbf{ideal} if
\begin{enumerate}[(i)]
\item $I$ is a subgroup of $(R,+)$.
\item $I$ is closed under multiplication, i.e. $a\in I$ and $b\in R$ implies $ab\in I$.
\end{enumerate}
\end{definition}
\begin{proposition}{Ideal as Submodule}{}
Let $R$ be a ring and $I\subseteq R$ be a subset of $R$. Then $I$ is an ideal of $R$ if and only if $I$ is a submodule of $R$ as an $R$-module.
\end{proposition}
\begin{definition}{Prime Ideal}{}
Let $R$ be a commutative ring. An ideal $I\subseteq R$ is called \textbf{prime} if
\begin{enumerate}[(i)]
\item $I\neq R$, i.e. $I$ is a proper ideal.
\item $ab\in I\implies a\in I\text{ or }b\in I$, i.e. there exist no two elements in $R$ whose product is in $I$ but neither of them is in $I$.
\end{enumerate}
\end{definition}
\begin{proposition}{}{}
Let $R$ be a commutative ring and $\mathfrak{p}$ be a prime ideal of $R$. If $x_1\cdots x_n\in \mathfrak{p}$, then there exists some $i\in\{1,2\cdots,n\}$ such that $x_i\in \mathfrak{p}$.
\end{proposition}
\begin{prf}
We prove this by induction on $n$. The case $n=1$ is trivial. Suppose the statement holds for $n=k$. If $x_1\cdots x_{k+1}\in \mathfrak{p}$, then $x_1\cdots x_k\in \mathfrak{p}$ or $x_{k+1}\in \mathfrak{p}$. If $x_1\cdots x_k\in \mathfrak{p}$, then there exists some $i\in\{1,2,\cdots,k\}$ such that $x_i\in \mathfrak{p}$. If $x_{k+1}\in \mathfrak{p}$, then we are done. Hence the statement holds for $n=k+1$.
\end{prf}
\begin{proposition}{Preimage of a Prime Ideal is a Prime Ideal}{}
Let $f:R\to S$ be a commutative ring homomorphism and $\mathfrak{p}\subseteq S$ be a prime ideal. Then $f^{-1}(\mathfrak{p})$ is a prime ideal of $R$.
\end{proposition}
\begin{corollary}{Contraction of a Prime Ideal is Prime}{contraction_of_prime_ideal_is_prime}
Let $R$ be a commutative ring and $S\subseteq R$ be a subring. If $\mathfrak{p}\subseteq R$ is a prime ideal, then $\mathfrak{p}\cap S$ is a prime ideal of $S$.
\end{corollary}
\begin{proof}
Let $\iota:S\hookrightarrow R$ be the inclusion map. Then $\iota^{-1}(\mathfrak{p})=\mathfrak{p}\cap S$ is a prime ideal of $S$.
\end{proof}
\begin{proposition}{Prime Ideal Equivalent Definition}{}
Let $R$ be a commutative ring and $I\subseteq R$ be an ideal. Then $I$ is prime if and only if $R/I$ is an integral domain.
\end{proposition}
\begin{definition}{Maximal Ideal}{}
Let $R$ be a commutative ring. An ideal $I\subseteq R$ is called \textbf{maximal} if
\begin{enumerate}[(i)]
\item $I\ne R$, i.e. $I$ is a proper ideal.
\item There exists no ideal $J\subseteq R$ such that $I\subsetneq J\subsetneq R$.
\end{enumerate}
\end{definition}
\begin{proposition}{Maximal Ideal Equivalent Definition}{}
Let $R$ be a commutative ring and $I\subseteq R$ be an ideal. Then $I$ is maximal if and only if $R/I$ is a field.
\end{proposition}
\begin{proposition}{}{}
If $R$ is a ring and $I$ an ideal of $R$ such that $I \neq R$, then $R$ contains a maximal ideal $\mathfrak{m}$ such that $I \subset \mathfrak{m}$.
\end{proposition}
\begin{prf}
Let $\mathcal{A}$ be the set of ideals of $R$ not equal to $R$, ordered by inclusion. We must show that whenever $\mathcal{C}$ is a chain in $\mathcal{A}$ it has an upper bound in $\mathcal{A}$, since then the result follows immediately from Zorn's lemma. So let's take such a chain $\mathcal{C}$.
Let $I=\bigcup_{J \in \mathcal{C}} J$. Now suppose $x_1, x_2$ are in $I$. Then there are $J_1, J_2$ in $\mathcal{C}$ such that $x_i \in J_i$. Either $J_1 \subseteq J_2$ or $J_2 \subseteq J_1$. Without loss of generality, we assume the former follows. Then $x_1 \in J_2$, so $x_1+x_2 \in J_2 \subset I$. Also if $a \in R$ then $a x_i \in J_2 \subseteq I$ for each $i$. It follows that $I$ is an ideal.
It now just remains to check that $I \neq A$. But $1 \notin J$ for each $J \in \mathcal{C}$, so $1 \notin I$ and $I \neq R$ as required.
\end{prf}
\begin{corollary}{}{}
Every non-unit lies in a maximal ideal.
\end{corollary}
\begin{prf}
Let $R$ be a commutative ring. If $x\notin R^{\times}$, then $(x)\ne R$. By the proposition above, there exists a maximal ideal $\mathfrak{m}$ such that $(x)\subseteq \mathfrak{m}$.
\end{prf}
\begin{definition}{Ideal generated from subset}{}
Let $R$ be a commutative ring and $\mathcal I(R)$ be the set of all ideals of $R$. Suppose $S\subseteq R$ be a subset. The \textbf{ideal generated by $S$}, denoted by $(S)$, is the smallest ideal of $R$ containing $S$, i.e.
\[
(S)=\bigcap_{\substack{ I\in \mathcal I(R)\\S\subseteq I}}I=\left\{\sum_{i=1}^n r_is_i\mid n\in\mathbb{Z}_{+},r_i\in R,s_i\in S\right\}.
\]
If $S=\{a_1,\dots,a_n\}$, we write
\[
(S)=(a_1,\dots,a_n)=\left\{\sum_{i=1}^n r_ia_i\midv r_i\in R\right\}.
\]
If $S=\mathfrak{p}$ is a prime ideal, we write
\[
(\mathfrak{p})=\mathfrak{p}R = \left\{ \sum_{i=1}^n r_i p \;\middle|\; r_i \in R, p \in \mathfrak{p}, n \in \mathbb{Z}_{+} \right\}.
\]
\end{definition}
\begin{definition}{Ideal Operations}{}
\begin{enumerate}[(i)]
\item Sum: $$I+J=\left\{a+b\mid a\in I,b\in J\right\}=\left(I\cup J\right),$$
$$
\sum_{t \in T} I_t=\left\{a_{t_1}+ \cdots +a_{t_n}\mid n\in\mathbb{Z}_{+},t_i\in T,a_{t_i}\in I_{t_i}\right\}.
$$
\item Product: $$IJ=\left\{\sum_{i=1}^n a_ib_i\midv n\in\mathbb{Z}_{+},a_i\in I,b_i\in J\right\}=\left(\{ab\mid a\in I,b\in J\}\right).$$
\item Power: $I^0=R$,
\[
I^n=\underbrace{I\cdots I}_{n\text{ times}}=\left(\{a^n\midv a\in I\}\right),
\]
\item Radical: \[
\sqrt{I} = \left\{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}_{+} \right\} = \bigcap_{\substack{\mathfrak{p} \in \mathrm{Spec} R \\ I \subseteq \mathfrak{p}}} \mathfrak{p}
\].
\end{enumerate}
\end{definition}
\begin{proposition}{}{}
Let $R$ be a commutative ring and $S$ be a subset of $R$. Then
$$(S)=\sum_{s\in S}(s).$$
\end{proposition}
\begin{prf}
\begin{align*}
\sum_{s \in S} (s)&=\left\{a_{s_1}+ \cdots +a_{s_n}\mid n\in\mathbb{Z}_{+},s_i\in S,a_{s_i}\in (s_i)\right\}\\
&=\left\{r_1s_{1}+ \cdots +r_ns_{n}\mid n\in\mathbb{Z}_{+},s_i\in S,r_i\in R\right\}\\
&=(S).
\end{align*}
\end{prf}
\begin{proposition}{Properties of Ideal Operations}{}
\begin{enumerate}[(i)]
\item $(I\cap J)^2 \subseteq I J \subseteq I \cap J \subseteq I+J$
\item ${I} \cap({J}+{K}) \supseteq {I} \cap {J}+{I} \cap {K}$
\item ${I} ({J}+{K}) = {I} {J}+{I} {K}$
\item $$
\begin{gathered}
J\sum_{t \in T} I_t=\sum_{t \in T} J I_t.
\end{gathered}
$$
\item $I(J K)=(I J) K$
\item $(a)^n=(a^n)$
\item $I^0 \supseteq \sqrt{I} \supseteq I \supseteq I^2 \supseteq I^3 \supseteq \cdots$
\item $\sqrt{\sqrt{I}} = \sqrt{I}$,
\item $\sqrt{I^n}=\sqrt{I}$, $\sqrt{I J}=\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$
\end{enumerate}
\end{proposition}
\begin{prf}
\begin{enumerate}[(i)]
\item Since $\{ab\mid a\in I,b\in J\}\subseteq I\cap J$, we see $IJ=\left(\{ab\mid a\in I,b\in J\}\right)\subseteq I\cap J$. Also we can check $I \cap J \subseteq I \cup J\subseteq (I \cup J)=I+J$.
\item[(vi)] If $x\in(a)^n$, then $x=r_1(r_2a)^n=r_1r_2^na^n\in(a^n)$. If $y\in(a^n)$, then $y=ra^n\in(a)^n$.
\end{enumerate}
\end{prf}
\begin{definition}{Semiring of Ideals of a Commutative Ring}{}
Let $R$ be a commutative ring. Then the set of all ideals of $R$ forms a semiring under the operations of addition and multiplication. The zero ideal $(0)$ is the additive identity and the unit ideal $R$ is the multiplicative identity.
\end{definition}
\begin{proposition}{Surjective Ring Homomorphism Induces Semiring Homomorphism of Ideals}{surjective_ring_homomorphism_induces_semiring_homomorphism_of_ideals}
If $\varphi:R\to S$ is a surjective ring homomorphism, then $\varphi$ induces a semiring homomorphism from the semiring of ideals of $R$ to the semiring of ideals of $S$.
\end{proposition}
\begin{prf}
First, we show $\varphi$ preserves addition of ideals. Let $I,J$ be ideals of $R$. Then
\begin{align*}
\varphi(I+J)&=\varphi\left(\left\{a+b\midv a\in I,b\in J\right\}\right)\\
&=\left\{\varphi(a+b)\midv a\in I,b\in J\right\}\\
&=\left\{\varphi(a)+\varphi(b)\midv a\in I,b\in J\right\}\\
&=\left\{x+y\midv x\in \varphi(I),y\in \varphi(J)\right\}\\
&=\varphi(I)+\varphi(J).
\end{align*}
Then we show $\varphi$ preserves multiplication of ideals. Let $I,J$ be ideals of $R$. We have
\begin{align*}
\varphi(IJ)&=\varphi\left(\left\{\sum_{i=1}^n a_ib_i\midv n\in\mathbb{Z}_{+},a_i\in I,b_i\in J\right\}\right)\\
&=\left\{\varphi\left(\sum_{i=1}^n a_ib_i\right)\midv n\in\mathbb{Z}_{+},a_i\in I,b_i\in J\right\}\\
&=\left\{\sum_{i=1}^n \varphi(a_i)\varphi(b_i)\midv n\in\mathbb{Z}_{+},a_i\in I,b_i\in J\right\}\\
&=\left\{\sum_{i=1}^n x_iy_i\midv n\in\mathbb{Z}_{+}, x_i\in \varphi(I),y_i\in \varphi(J)\right\}\\
&=\varphi(I)\varphi(J).
\end{align*}
Finally, we show $\varphi$ preserves the multiplicative identity. This follows immediately from the fact that $\varphi$ is surjective.
\end{prf}
\begin{proposition}{}{prime_ideal_contains_product_iff_contains_at_least_one_factor}
Let $I$ and $J$ be ideals of a commutative ring $R$ and $\mathfrak{p}$ be a prime ideal of $R$. Then
\[
I\cap J\subseteq \mathfrak{p}\iff IJ\subseteq \mathfrak{p}\iff I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}.
\]
\end{proposition}
\begin{prf}
We have the following chain of implications:
\begin{itemize}
\item $I\cap J\subseteq \mathfrak{p}\implies IJ\subseteq \mathfrak{p}$. Note that $IJ\subseteq I\cap J$. The result follows immediately.
\item $IJ\subseteq \mathfrak{p}\implies I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}$. Assume $IJ\subseteq \mathfrak{p}$. Suppose $I\subsetneq \mathfrak{p}$ and $J\subsetneq \mathfrak{p}$. Then there exist $a\in I-\mathfrak{p}$ and $b\in J-\mathfrak{p}$. Since $\mathfrak{p}$ is prime, $ab\in IJ\subseteq \mathfrak{p}$ implies $a\in \mathfrak{p}$ or $b\in \mathfrak{p}$, which is a contradiction. Hence $I\subseteq \mathfrak{p}$ or $J\subseteq \mathfrak{p}$.
\item $I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}\implies I\cap J\subseteq \mathfrak{p}$. Note that $I\cap J\subseteq I$. The result follows immediately.
\end{itemize}
\end{prf}
\begin{definition}{Radical Ideal}{}
An ideal $I$ is called a \textbf{radical ideal} if $I=\sqrt{I}$.
\end{definition}
\begin{proposition}{Radical Ideal Equivalent Definition}{}
Let $R$ be a commutative ring and $I\subseteq R$ be an ideal. Then $I$ is radical if and only if $R/I$ is reduced.
\end{proposition}
\begin{definition}{Nilradical}{}
The \textbf{nilradical} of $R$, denoted by $\mathfrak{N}_R$, is the radical ideal $\sqrt{0}$ consisting of all the nilpotent elements of $R$. We have
\[
\mathfrak{N}_R=\sqrt{0}=\left\{ r \in R \mid r^n=0 \text{ for some } n \in \mathbb{Z}_{+} \right\} = \bigcap_{\substack{\mathfrak{p} \in \mathrm{Spec} R }} \mathfrak{p}
\]
\end{definition}
\begin{proposition}{Properties of Radical Ideal}{}
\begin{enumerate}[(i)]
\item For any ideal $I$, $\sqrt{0}\subseteq \sqrt{I}$.
\item $\sqrt{I}$ is the smallest radical ideal containing $I$.
\item $\sqrt{\mathfrak{p}^n}=\sqrt{\mathfrak{p}}=\mathfrak{p}$ for any prime ideal $\mathfrak{p}$, which means prime ideals are radical.
\item Suppose the natural projection $\pi: R\to R/I$ induces a bijection between the set of ideals of $R$ containing $I$ and the set of ideals of $R/I$, denoted by $\tilde{\pi}:\mathcal{I}(R)\to\mathcal{I}(R/I)$. Then $\tilde{\pi}$ maps $\sqrt{I}$ to $\mathfrak{N}_{R/I}$.
\item A commutative ring $R$ is reduced if and only if $\mathfrak{N}_R=(0)$.
\end{enumerate}
\end{proposition}
In summary, we have the following chain of inclusions:
\[
\left\{\text{maximal ideals of }R\right\} \subseteq \left\{\text{prime ideals of }R\right\} \subseteq \left\{\text{radical ideals of }R\right\} \subseteq \left\{\text{ideals of }R\right\}.
\]
\begin{proposition}{Quotient Preserves Radical, Prime, Maximal Ideals}{}
Let $R$ be a commutative ring and $I\subseteq R$ be a proper ideal. Then we have bijections between the following sets:
\begin{align*}
\left\{\text{ideals of }R\text{ containing }I\right\}&\longleftrightarrow\left\{\text{ideals of }R/I\right\}\\
J&\longmapsto J/I
\end{align*}
The ideal $J\supseteq I$ is radical, prime, or maximal if and only if $J/I$ is radical, prime, or maximal respectively.
\end{proposition}
\begin{definition}{Jacobson Radical}{}
Let $R$ be a commutative ring and $\mathfrak{m}$ be a maximal ideal of $\mathfrak{m}$. The \textbf{Jacobson radical} of $R$, denoted by $\mathfrak{J}_R$, is the intersection of all maximal ideals of $R$, denoted by
\[
\mathfrak{J}_R=\bigcap_{\substack{\mathfrak{m} \in \mathrm{MaxSpec} R }} \mathfrak{m}.
\]
\end{definition}
\subsection{Prime Elements}
\begin{definition}{Divisibility}{}
Let $R$ be a commutative ring and $a,b\in R$. We say $a$ \textbf{divides} $b$ if there exists $c\in R$ such that $b=ac$, denoted by $a\mid b$. If $a\mid b$. $a$ is called a \textbf{divisor} of $b$, and $b$ is called a \textbf{multiple} of $a$.
\end{definition}
\begin{proposition}{}{}
Let $R$ be a commutative ring.
\begin{enumerate}[(i)]
\item $a \mid b\iff(b) \subseteq (a)$.
\item $u\in R^\times \iff (u) = R \iff \forall r\in R,\,u\mid r$.
\end{enumerate}
\end{proposition}
\begin{definition}{Prime Element}{}
Let $R$ be a commutative ring. An element $a\in R$ is called \textbf{prime} if
\begin{enumerate}[(i)]
\item $a\ne 0$.
\item $a\notin R^\times$, i.e. $a$ is not a unit.
\item $a\mid bc\implies a\mid b\text{ or }a\mid c$.
\end{enumerate}
\end{definition}
\begin{proposition}{Prime Element and Prime Ideal}{}
Suppose $R$ is a commutative ring and $a\in R$. Then
\[
a\text{ is prime }\iff (a)\text{ is a nonzero prime ideal}.
\]
\end{proposition}
\begin{prf}
\begin{align*}
a\text{ is prime }\iff &a\ne 0\text{ and }a\notin R^\times\text{ and }a\mid bc\implies a\mid b\text{ or }a\mid c\\
\iff &(a)\ne 0\text{ and }(a)\ne R^\times\text{ and }bc\in (a)\implies b\in (a)\text{ or }c\in (a)\\
\iff &(a)\text{ is a nonzero prime ideal}.
\end{align*}
\end{prf}
\subsection{Local Commutative Ring}
\begin{definition}{Local Commutative Ring}{local_commutative_ring}
Let $R$ be a commutative ring. Then the following are equivalent:
\begin{enumerate}[(i)]
\item $R$ is a local ring.
\item $R$ has a unique maximal ideal.
\item $R$ has a maximal ideal $\mathfrak{m}$ and $R - \mathfrak{m}= R^{\times}$.
\item $R$ is not the zero ring and for every $x \in R$, $x\in R^{\times}$ or $1-x\in R^{\times}$.
\item $R$ is not the zero ring and if $\sum_{i=1}^n r_i\in R^{\times}$, then there exist some $i$ such that $r_i\in R^{\times}$.
\item $R$ is not the zero ring and the sum of any two non-units in $R$ is a non-unit.
\end{enumerate}
\end{definition}
\begin{lemma}{Nakayama's Lemma}{Nakayama_lemma}
Let $R$ be a commutative ring and $M$ be a finitely generated $R$-module. If the image of $m_1,\cdots,m_n$ in $M/\mathfrak{J}_R M$ generates $M/\mathfrak{J}_R M$ as an $R/\mathfrak{J}_R$-module, then $m_1,\cdots,m_n$ generates $M$ as an $R$-module.
\end{lemma}
\begin{proposition}{}{}
Let $(R, \mathfrak{m})$ be a local commutative ring and $M$ be a finitely generated $R$-module. Let
\[
\mathfrak{m}M = \left\{ \sum_{i=1}^n r_i m_i \;\middle|\; r_i \in \mathfrak{m}, m_i \in M, n \in \mathbb{N} \right\}
\]
denote the submodule of $M$ generated by $\mathfrak{m}$-action and $\pi: M \to M/\mathfrak{m}M$ be the natural projection. Then we have
\begin{itemize}
\item $M/\mathfrak{m}M$ is an $R/\mathfrak{m}$-vector space.
\item If $(v_1, \ldots, v_n)$ is a $R/\mathfrak{m}$-basis for $M/\mathfrak{m}M$, then $(\pi^{-1}(v_1), \ldots, \pi^{-1}(v_n))$ is a minimal generating set for $M$.
\item If $(m_1, \ldots, m_k)$ is a minimal generating set for $M$, then $(\pi(m_1), \ldots, \pi(m_k))$ is a $R/\mathfrak{m}$-basis for $M/\mathfrak{m}M$.
\end{itemize}
As a result, the minimal number of generators of $M$ is equal to $\dim_{R/\mathfrak{m}}(M/\mathfrak{m}M)$.
\end{proposition}
\begin{prf}
The action of $R/\mathfrak{m}$ on $M/\mathfrak{m}M$ is defined by
\[
\overline{r}\cdot\pi(m)=\pi(rm).
\]
This is well-defined since if $\overline{r_1}=\overline{r_2}$, then $r_1-r_2=s \in \mathfrak{m}$. For any $m\in M$, we have
\[
r_1m-r_2m=sm\in \mathfrak{m}M \implies \pi(r_1m)=\pi(r_2m).
\]
Suppose $(v_1, \ldots, v_n)$ is a $R/\mathfrak{m}$-basis for $M/\mathfrak{m}M$. The rest of the proof is a direct application of \hyperlink{th:Nakayama_lemma}{Nakayama's lemma}.
\end{prf}
\section{Integral Domain}
\begin{definition}{Integral Domain}{}
A commutative ring $R$ is called an \textbf{integral domain} if
\begin{enumerate}[(i)]
\item the only zero divisor of $R$ is 0,
\item $R$ is not the zero ring.
\end{enumerate}
\end{definition}
\begin{proposition}{Cancellation Laws in Integral Domain}{}
Let $R$ be an integral domain. Then the following cancellation laws hold: given any $a,b,c\in R$, if $a \ne 0$, then $ab = ac$ implies $b = c$.
\end{proposition}
\begin{proposition}{Nonzero Subring of Integral Domain is Integral Domain}{}
Let $R$ be an integral domain and $S\subseteq R$ be a nonzero subring. Then $S$ is an integral domain.
\end{proposition}
\begin{prf}
Let $a,b\in S$ be nonzero elements. Since $a,b\in R$, we have $ab=0\implies a=0\text{ or }b=0$. Hence $S$ is an integral domain.
\end{prf}
\begin{definition}{Associate}{}
Let $R$ be an integal domain. Two elements $a,b\in R$ are called \textbf{associates} if one of the following equivalent conditions holds:
\begin{enumerate}[(i)]
\item $a=ub$ for some $u\in R^\times$.
\item $a\mid b$ and $b\mid a$, i.e. $(a)=(b)$.
\end{enumerate}
\end{definition}
If $R$ is a general commutative ring, then we only have the implication $(\mathrm i)\implies (\mathrm{ii})$. The converse is not true in general. For example, in $\mathbb{C}[x,y,z]/(x-xyz)$, $\overline{x}\mid \overline{xy}$ and $\overline{xy}\mid \overline{x}$, but there exists no unit $u$ such that $\overline{x}=u\overline{xy}$.
Associatedness can also be described in terms of the action of $R^\times$ on $R$ via multiplication: two elements of $R$ are associates if they are in the same $R^\times$-orbit.
\begin{definition}{Irreducible Element}{}
Let $R$ be an integal domain. An element $a\in R$ is called \textbf{irreducible} if
\begin{enumerate}[(i)]
\item $a\notin R^\times$, i.e. $a$ is not a unit.
\item $a=bc\implies b\in R^\times\text{ or }c\in R^\times$.
\end{enumerate}
\end{definition}
0 is never an irreducible element.
\begin{proposition}{Prime Element $\implies$ Irreducible Element in Integral Domain}{}
Let $R$ be an integal domain. Then every prime element in $R$ is irreducible.
\end{proposition}
\begin{prf}
Let $a\in R$ be a prime element. Suppose $a=bc$ for some $b,c\in R$. Then $a\mid bc$. Since $a$ is prime, there must be $a\mid b$ or $a\mid c$. Without loss of generality, we can assume $a\mid b$. Then $b=ad$ for some $d\in R$. Thus we have $$a=bc=adc\implies a(1-dc)=0\implies dc=1\implies c\in R^\times.$$ That implies $a$ is irreducible.
\end{prf}
\begin{proposition}{Prime Ideal Equivalent Definition}{}
Let $R$ be a commutative ring. An ideal $I\subseteq R$ is prime if and only if $R/I$ is an integal domain.
\end{proposition}
\section{Unique Factorization Domain}
\begin{definition}{Unique Factorization Domain}{}
An integral domain $R$ is called a \textbf{unique factorization domain} (UFD) if
\begin{enumerate}[(i)]
\item every nonzero nonunit element of $R$ can be written as a product of irreducible elements of $R$.
\item if $p_1\cdots p_n=q_1\cdots q_m$ for some irreducible elements $p_1,\cdots,p_n,q_1,\cdots,q_m\in R$, then $n=m$ and there exists a permutation $\sigma\in S_n$ such that $p_i$ is an associate of $q_{\sigma(i)}$ for all $i=1,\cdots,n$.
\end{enumerate}
\end{definition}
\begin{proposition}{Irreducible Element $\iff$ Prime Element in UFD}{}
Let $R$ be a UFD. Then every irreducible element in $R$ is prime.
\end{proposition}
\begin{prf}
Let $a\in R$ be an irreducible element. Suppose $a\mid bc$ for some $b,c\in R$. Then $bc=ad$ for some $d\in R$. Since $R$ is a UFD, we can write $b=p_1\cdots p_n$ and $c=q_1\cdots q_m$ for some irreducible elements $p_1,\cdots,p_n,q_1,\cdots,q_m\in R$. Then we have $$ad=bc=p_1\cdots p_nq_1\cdots q_m.$$ Since $a$ is irreducible, $a$ must be an associate of one of the $p_i$'s or $q_j$'s. Without loss of generality, we can assume $a\sim p_1$. Then $a\mid b$. That implies $a$ is prime.
\end{prf}
\section{Principal Ideal Domain}
\begin{definition}{Principal Ideal Domain}{}
An integral domain $R$ is called a \textbf{principal ideal domain} (PID) if every ideal of $R$ is principal.
\end{definition}
\begin{proposition}{}{}
Let $R$ be a commutative ring. Then the following are equivalent:
\begin{enumerate}[(i)]
\item $R$ is a PID.
\item $R$ is a UFD with Krull dimension $\dim R \le 1$.
\end{enumerate}
\end{proposition}
\begin{corollary}{PID $\implies$ UFD}{}
Every PID is a UFD.
\end{corollary}
\begin{proposition}{Prime Ideal $\iff$ Maximal Ideal in PID}{}
Let $R$ be a PID. Then every nonzero prime ideal in $R$ is maximal.
\end{proposition}
\begin{prf}
Let $I\subseteq R$ be a prime ideal. We only need to show $R/I$ is a field. Let $\overline{a}\in R/I$ be a nonzero element. Then $a\notin I$. Since $I$ is prime, $a$ is not a multiple of any prime element in $R$. Thus $a$ is irreducible. Since $R$ is a PID, $a$ is prime. Thus $\overline{a}$ is prime in $R/I$. Since $R/I$ is an integral domain, $\overline{a}$ is a maximal ideal in $R/I$. That implies $R/I$ is a field.
\end{prf}
\section{Polynomial Ring}
\begin{definition}{Polynomial Ring}{}
Let $R$ be a commutative ring. The \textbf{polynomial ring} in $n$ variables over $R$ is the ring $R[x_1,\cdots,x_n]$ defined as the set of all formal sums $$\sum_{\alpha\in\mathbb{N}^n}a_\alpha x^\alpha$$ where $a_\alpha\in R$ satisfies $a_\alpha=0$ for all but finitely many $\alpha\in\mathbb{N}^n$ and $x^\alpha=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$ for $\alpha=(\alpha_1,\cdots,\alpha_n)\in\mathbb{N}^n$. The addition and multiplication are defined as follows: $$\sum_{\alpha\in\mathbb{N}^n}a_\alpha x^\alpha+\sum_{\alpha\in\mathbb{N}^n}b_\alpha x^\alpha=\sum_{\alpha\in\mathbb{N}^n}(a_\alpha+b_\alpha)x^\alpha$$ and $$\left(\sum_{\alpha\in\mathbb{N}^n}a_\alpha x^\alpha\right)\left(\sum_{\beta\in\mathbb{N}^n}b_\beta x^\beta\right)=\sum_{\gamma\in\mathbb{N}^n}\left(\sum_{\alpha+\beta=\gamma}a_\alpha b_\beta\right)x^\gamma.$$
\end{definition}
\begin{proposition}{Properties of Polynomial Ring}{}
Let $R$ be a commutative ring.
\begin{enumerate}
\item If $R$ is a UFD, then $R[x_1,\cdots.x_n]$ is a UFD.
\item $R$ is a field $\iff$ $R[x]$ is a PID $\iff$ $R[x]$ is an Euclidean domain.
\end{enumerate}
\end{proposition}
\section{Construction}
\subsection{Product}
\begin{definition}{Product of Commutative Rings}{}
Let $(R_i)_{i\in I}$ be a family of commutative rings. The \textbf{product} of the family $(R_i)_{i\in I}$ is the set of all families $(r_i)_{i\in I}$ where $r_i\in R_i$ for all $i\in I$. The addition and multiplication are defined componentwise:
\begin{align*}
(r_i)_{i\in I}+(s_i)_{i\in I}&=(r_i+s_i)_{i\in I},\\
(r_i)_{i\in I}\cdot(s_i)_{i\in I}&=(r_i\cdot s_i)_{i\in I}.
\end{align*}
\end{definition}
\begin{proposition}{Ideals of Finite Product of Commutative Rings}{}
Let $R_1, R_2, \cdots, R_n$ be commutative rings. Then $I$ is an ideal of the product $R_1\times R_2\times \cdots \times R_n$ if and only if $I=I_1\times I_2\times \cdots \times I_n$ where $I_i$ is an ideal of $R_i$ for all $i=1,2,\cdots,n$.
\end{proposition}
\begin{prf}
It is sufficient to show this for $n=2$. Let $I$ be an ideal of $R_1\times R_2$. Let $\mathrm{pr}_1:R_1\times R_2\to R_1$ and $\mathrm{pr}_2:R_1\times R_2\to R_2$ be the natural projections. Then $\mathrm{pr}_1(I)$ and $\mathrm{pr}_2(I)$ are ideals of $R_1$ and $R_2$ respectively. It is easy to check that $I\subseteq \mathrm{pr}_1(I)\times \mathrm{pr}_2(I)$. To show the reverse inclusion, let $(a,b)\in \mathrm{pr}_1(I)\times \mathrm{pr}_2(I)$. Then there exist $(a,y)\in I$ such that $\mathrm{pr}_1((a,y))=a$ and $(x,b)\in I$ such that $\mathrm{pr}_2((x,b))=b$. Then
\[
(a,b)=(1,0)(a,y)+(0,1)(x,b)\in I.
\]
This implies $I=\mathrm{pr}_1(I)\times \mathrm{pr}_2(I)$.
Conversely, let $I_1$ and $I_2$ be ideals of $R_1$ and $R_2$ respectively. Then $I_1\times I_2$ is an additive subgroup of $R_1\times R_2$. For any $(a,b)\in I_1\times I_2$ and $(x,y)\in R_1\times R_2$, we have
\[
(x,y)(a,b)=(xa,yb)\in I_1\times I_2.
\]
This implies $I_1\times I_2$ is an ideal of $R_1\times R_2$.
\end{prf}
\subsection{Quotient Ring}
\begin{definition}{Quotient Ring}{}
Let $R$ be a commutative ring and $I\subseteq R$ be an ideal. The \textbf{quotient ring} of $R$ by $I$, denoted by $R/I$, is the set of equivalence classes of the relation $\sim$ on $R\times R$ defined by $$(a,b)\sim (c,d)\iff a-d\in I.$$ The equivalence class of $(a,b)$ is denoted by $a+I$. The addition and multiplication on $R/I$ are defined as follows:
\begin{align*}
(a+I)+(b+I)&=(a+b)+I\\
(a+I)\cdot(b+I)&=(ab)+I
\end{align*}
The addition identify is $0+I$ and the multiplication identity is $1+I$.
\end{definition}
\begin{proposition}{Universal Property of Quotient Ring}{universal_property_of_quotient_ring}
Let $R$ be a commutative ring and $I\subseteq R$ be an ideal. The natural projection $\pi:R\to R/I$ satisfies the following universal property: for any ring homomorphism $f:R\to S$ such that $I\subseteq \ker f$ or equivalently $f(I)=\left\{0_S\right\}$, there exists a unique ring homomorphism
\begin{align*}
\overline{f}:R/I&\longrightarrow S\\
r+I&\longmapsto f(r)
\end{align*}
such that the following diagram commutes
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
R \arrow[d, "\pi"', two heads] \arrow[r, "f"] \& S \\[+0.7em]
R/I \arrow[ru, "\overline{f}"', dashed] \&
\end{tikzcd}
\end{center}
Moreover, $\overline{f}$ is surjective exactly when $f$ is surjective. $\overline{f}$ is injective exactly when $I=\ker f$.
\end{proposition}
\begin{prf}
If $\overline{f}$ is surjective, then $f=\overline{f}\circ\pi$ is surjective. If $f$ is surjective, then for any $s\in S$, there exists $r\in R$ such that $f(r)=s$. Thus $\overline{f}(r+I)=f(r)=s$. That implies $\overline{f}$ is surjective.
If $\overline{f}$ is injective, then $\ker f=\ker \overline{f}\circ\pi=\ker \pi=I$. If $I=\ker f$, then
\[
\ker \overline{f}=\left\{r+I\in R/I\mid \overline{f}(r+I)=0\right\}=\left\{r+I\in R/I\mid f(r)=0\right\}=\left\{r+I\in R/I \mid r\in I\right\}=\left\{0+I\right\}=\left\{0_{R/I}\right\}
\]
which implies $\overline{f}$ is injective.
\end{prf}
\subsection{Free Object}
\begin{definition}{Free Commutative Ring}{}
Since $\mathsf{CRing}\cong \mathbb{Z}\text{-}\mathsf{CAlg}$, the \textbf{free commutative ring} on a set $X$ is isomorphic to the polynomial ring $\mathbb{Z}[X]$, which coincides with the free commutative $\mathbb{Z}$-algebra on $X$.
\end{definition}
\subsection{Localization}
\begin{definition}{Multuplicative Subset}{}
Let $R$ be a commutative ring. A subset $S\subseteq R$ is called \textbf{multiplicative} if $S$ is monoid under the multiplication of $R$, i.e.
\begin{enumerate}[(i)]
\item $1\in S$.
\item $a,b\in S\implies ab\in S$.
\end{enumerate}
\end{definition}
\begin{proposition}
Let $\varphi:R\to R'$ be a ring homomorphism and $S\subseteq R$ be a multiplicative subset. Then $\varphi(S)$ is a multiplicative subset of $\subseteq R'$.
\end{proposition}
\begin{prf}
Since $1\in S$, we have $1'=\varphi(1)\in \varphi(S)$. For any $a',b'\in \varphi(S)$, there exist $a,b\in S$ such that $a'=\varphi(a)$ and $b'=\varphi(b)$. Since $S$ is multiplicative, we have $ab\in S$. Thus $a'b'=\varphi(a)\varphi(b)=\varphi(ab)\in \varphi(S)$. That implies $\varphi(S)$ is a multiplicative subset of $R'$.
\end{prf}
\begin{definition}{Localization of a Ring}{}
Let $R$ be a commutative ring and $S\subseteq R$ be a multiplicative subset. The \textbf{localization} of $R$ at $S$ is the ring $S^{-1}R$ defined as the set of equivalence classes of the relation $\sim$ on $R\times S$ defined by $$(a,s)\sim (b,t)\iff \exists u\in S\text{ such that }u(at-bs)=0.$$
The equivalence class of $(a,s)$ is denoted by $\frac{a}{s}$. The addition and multiplication on $S^{-1}R$ are defined as follows:
\begin{align*}
\frac{a}{s}+\frac{b}{t}&=\frac{at+bs}{st}\\
\frac{a}{s}\cdot\frac{b}{t}&=\frac{ab}{st}
\end{align*}
The addition identify is $\frac{0}{1}$ and the multiplication identity is $\frac{1}{1}$.
\end{definition}
The localization of a commutative ring $R$ at a multiplicative subset $S$ is a commutative ring $S^{-1}R$. If we consider $R$ as an $R$-module, then the localization of the $R$-module $R$ at $S$ is an $S^{-1}R$-module $S^{-1}R$. The underlying sets of $S^{-1}R$ as a commutative ring and as an $S^{-1}R$-module are the same. Furthermore, the ring structure of $S^{-1}R$ is compatible with the $S^{-1}R$-module structure, which makes $S^{-1}R$ a commutative $S^{-1}R$-algebra. By composing the localization map $R\to S^{-1}R$, $S^{-1}R$ can also be viewed as a commutative $R$-algebra.
Next we introduce the universal property of localization. It says localization is the most economical way to make a multiplicative subset invertible.
\begin{proposition}{Universal Property of Localization}{universal_property_of_localization}
Let $R$ be a commutative ring and $S\subseteq R$ be a multiplicative subset. The ring homomorphism
\begin{align*}
\varphi:R&\longrightarrow S^{-1}R\\
r&\longmapsto \frac{r}{1}
\end{align*}
satisfies the following universal property: for any ring homomorphism $\psi:R\to T$ such that $\psi(S)\subseteq T^\times$ or equivalently $S\subseteq \psi^{-1}(T^\times)$, there exists a unique ring homomorphism
\begin{align*}
\psi':S^{-1}R&\longrightarrow T\\
\frac{a}{s}&\longmapsto \psi(a)(\psi(s))^{-1}
\end{align*}
such that the following diagram commutes
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
S^{-1}R\arrow[rr, "\psi'", dashed]\&\& T \& \\
\&R \arrow[ru, "\psi"'] \arrow[lu, "\varphi"] \&
\end{tikzcd}
\end{center}
Moreover, if $\psi$ is injective, then $\psi'$ is injective. If $\psi$ is surjective, then $\psi'$ is surjective.
\end{proposition}
\begin{prf}
First let's check $\psi'$ is well-defined. Suppose $\dfrac{a}{s}=\dfrac{b}{t}$. Then there exists $u\in S$ such that $u(at-bs)=0$. Since $\psi$ is a ring homomorphism, we have
$$
0=\psi(u(at-bs))=\psi(u)\left(\psi(a)\psi(t)-\psi(b)\psi(s)\right).
$$
Since $u\in S$ and $\psi(S)\subseteq T^\times$, we have $\psi(u)\in T^\times$. Thus
$$
\psi'\left(\frac{a}{s}\right)=\psi(a)(\psi(t))^{-1}=\psi(b)(\psi(s))^{-1}= \psi'\left(\frac{b}{t}\right).
$$
That implies $\psi'$ is well-defined. It is easy to check $\psi'$ is a ring homomorphism
\[
\psi'\left(\frac{a}{s}+\frac{b}{t}\right)=\psi'\left(\frac{at+bs}{st}\right)=\psi(at+bs)(\psi(st))^{-1}=\psi(a)(\psi(s))^{-1}+\psi(b)(\psi(t))^{-1}=\psi'\left(\frac{a}{s}\right)+\psi'\left(\frac{b}{t}\right).
\]
The multiplication is similar. The diagram commutes since
\[
\psi'\circ\varphi(r)=\psi'\left(\frac{r}{1}\right)=\psi(r)(\psi(1))^{-1}=\psi(r).
\]
Now we show $\psi'$ is unique. Suppose there exists another ring homomorphism $\psi'':S^{-1}R\to T$ such that the diagram commutes. Then for any $\frac{a}{s}\in S^{-1}R$, we have
\[
\psi''\left(\frac{a}{s}\right) = \psi''\left(\frac{a}{1}\frac{1}{s}\right) = \psi''\left(\frac{a}{1}\right)\psi''\left(\frac{1}{s}\right) = \psi''\left(\frac{a}{1}\right)\left(\psi''\left(\frac{s}{1}\right)\right)^{-1} = \psi\left(a\right)(\psi(s))^{-1} = \psi'\left(\frac{a}{s}\right).
\]
That implies $\psi''=\psi'$. Thus $\psi'$ is unique.\\
Now suppose $\psi$ is injective. Then
\[
\ker \psi' = \left\{ \frac{a}{s} \in S^{-1}R \midv \psi(a)(\psi(s))^{-1} = 0 \right\} = \left\{ \frac{a}{s} \in S^{-1}R \midv \psi(a) = 0 \right\} = \left\{ \frac{0}{s} \midv s \in S \right\} = \left\{ 0 \right\},
\]
which implies $\psi'$ is injective.
\end{prf}
\begin{proposition}{Localization of Commutative Rings as a Functor}{}
Let $\mathsf{CRingM}$ be the category, whose objects and morphisms defined as follows:
\begin{itemize}
\item The objects are pairs $(R,S)$ where $R$ is a commutative ring and $S\subseteq R$ is a multiplicative subset.
\item The morphisms from $(R,S)$ to $(R',S')$ are ring homomorphisms $f:R\to R'$ such that $f(S)\subseteq S'$.
\end{itemize}
Localization of commutative rings is a functor
\[
\begin{tikzcd}[ampersand replacement=\&]
\mathsf{CRingM}\&[-25pt]\&[+10pt]\&[-30pt]\mathsf{CRing}\&[-30pt]\&[-30pt] \\ [-15pt]
(R,S) \arrow[dd, "f"{name=L, left}]
\&[-25pt] \& [+10pt]
\& [-30pt] S^{-1}R\arrow[dd, "L(f)"{name=R}] \&[-30pt]\ni
\&[-30pt]\frac{a}{s}\arrow[dd,mapsto]\&[-30pt]\\ [-10pt]
\& \phantom{.}\arrow[r, "L", squigarrow]\&\phantom{.} \& \\[-10pt]
(R',S') \& \& \& S'^{-1}R'\&[-30pt]\ni
\&[-30pt]\frac{f(a)}{f(s)}
\end{tikzcd}
\]
Let $G:\mathsf{CRing}\to \mathsf{CRingM}$ be functor that sends $R$ to $(R,R^\times)$ and $f:R\to R'$ to $(f,f|_{R^\times})$.
Then we have a pair of adjoint functors
\[
\begin{tikzcd}[ampersand replacement=\&]
\mathsf{CRingM} \arrow[r, "L"{name=U}, bend left, start anchor=east, yshift=1.7ex, end anchor=west] \&[+12pt]
\mathsf{CRing} \arrow[l, "G"{name=D, anchor=north}, bend left, start anchor=west, yshift=-1.5ex, end anchor=east]
\arrow[phantom, from=U, to=D, "\dashv"{rotate=-90}]
\end{tikzcd}
\]
and natural isomorphism
\[
\mathrm{Hom}_{\mathsf{CRing}}(S^{-1}R, T)\cong \mathrm{Hom}_{\mathsf{CRingM}}((R,S), (T,T^\times)).
\]
\end{proposition}
\begin{proposition}{Localization Functor for $R\text{-}\mathsf{CAlg}$}{}
Let $R$ be a commutative ring, $S$ be a multiplicative set in $R$, and $M$ be an $R$-module. Define the localization functor as follows
\[
\begin{tikzcd}[ampersand replacement=\&]
R\text{-}\mathsf{CAlg}\&[-25pt]\&[+10pt]\&[-30pt] S^{-1}R\text{-}\mathsf{CAlg}\&[-30pt]\&[-30pt] \\ [-15pt]
A \arrow[dd, "f"{name=L, left}]
\&[-25pt] \& [+10pt]
\& [-30pt] S^{-1}A\arrow[dd, "S^{-1}(f)"{name=R}] \&[-30pt]\ni
\&[-30pt]\frac{a}{s}\arrow[dd,mapsto]\&[-30pt]\\ [-10pt]
\& \phantom{.}\arrow[r, "S^{-1}", squigarrow]\&\phantom{.} \& \\[-10pt]
B \& \& \& S^{-1}B\&[-30pt]\ni
\&[-30pt]\frac{f(a)}{s}
\end{tikzcd}
\]
Let $\mathrm{Res}_{R\to S^{-1}R}: S^{-1}R\text{-}\mathsf{CAlg}\to R\text{-}\mathsf{CAlg}$ be the functor that regards $S^{-1}R$-algebras as $R$-algebras. Then we have a pair of adjoint functors
\[
\begin{tikzcd}[ampersand replacement=\&]
R\text{-}\mathsf{CAlg} \arrow[r, "S^{-1}"{name=U}, bend left, start anchor=east, yshift=1.7ex, end anchor=west] \&[+12pt]
S^{-1}R\text{-}\mathsf{CAlg} \arrow[l, "{\mathrm{Res}}"{name=D, anchor=north}, bend left, start anchor=west, yshift=-1.5ex, end anchor=east]
\arrow[phantom, from=U, to=D, "\dashv"{rotate=-90}]
\end{tikzcd}
\]
and natural isomorphism
\[
\mathrm{Hom}_{S^{-1}R\text{-}\mathsf{CAlg}}(S^{-1}A, B)\cong \mathrm{Hom}_{R\text{-}\mathsf{CAlg}}(A, \mathrm{Res}_{R\to S^{-1}R}(B)).
\]
And we have the following commutative diagram in $R\text{-}\mathsf{CAlg}$
\[
\begin{tikzcd}
A \arrow[r, "f"] \arrow[d, "l_1"'] & B \arrow[d, "l_2"] \\
S^{-1}A \arrow[r, "S^{-1}(f)"', dashed] & S^{-1}B
\end{tikzcd}
\]
\end{proposition}
\begin{proposition}{Properties of Localization of Rings}{prop_of_localization_of_rings}
Let $R$ be a commutative ring and $S\subseteq R$ be a multiplicative subset. Then
\begin{enumerate}[(i)]
\item $S^{-1}R=\{0\}$ if and only if $0\in S$.
\item If $0\notin S$, then $\frac{a}{s}$ is invertible in $S^{-1}R$ if and only if there exists $r\in R$ such that $ra\in S$.
\item If $0\notin S$, the localization map $\varphi:R\to S^{-1}R$ is injective if and only if $S$ contains no zero divisors.
\item Localization preserves nilradical: $\mathfrak{N}_{S^{-1}R}=S^{-1}\mathfrak{N}_R$. Especially, $R$ is reduced $\implies$ $S^{-1}R$ is reduced.
\end{enumerate}
\end{proposition}
\begin{prf}
\begin{enumerate}[(i)]
\item \[
S^{-1}R=0\iff \frac{1}{1}=\frac{0}{1}\iff \exists s\in S\text{ such that }s\cdot 1=0\iff 0\in S.
\]
\item Suppose $0\notin S$. If $\frac{a}{s}$ is invertible in $S^{-1}R$, then there exists $\frac{b}{t}\in S^{-1}R$ such that $\frac{a}{s}\cdot\frac{b}{t}=\frac{1}{1}$, which implies there exists $u\in S$ such that $u(ab-st)=0$. Let $r=ub\in R$ and then we see $ra=ust\in S$. Conversely, suppose there exists $r\in R$ such that $ra\in S$. Then $\frac{a}{s}\cdot\frac{rs}{ra}=\frac{1}{1}$, which implies $\frac{a}{s}$ is invertible.
\item Suppose $0\notin S$. Given the localization map $\varphi:R\to S^{-1}R$, we have
\[
\varphi(r)=0\iff \frac{r}{1}=\frac{0}{1}\iff \exists s\in S\text{ such that }s\cdot r=0.
\]
Thus
$$
\varphi\text{ is injective}\iff \ker \varphi=\{0\}\iff \forall s\in S,\forall r\in R-\{0\},sr\ne 0\iff S\text{ contains no zero divisors}.
$$
\item By \Cref{th:properties_of_localization_of_ideals}, localization commutes with taking radical. Thus we have $\mathfrak{N}_{S^{-1}R}=\sqrt{0(S^{-1}R)}=S^{-1}\sqrt{0R}=S^{-1}\mathfrak{N}_R$. If $R$ is reduced, then the nilradical of $R$ is $\mathfrak{N}_R=(0)$. Thus we have $\mathfrak{N}_{S^{-1}R}=S^{-1}\mathfrak{N}_R=S^{-1}(0)=(0)$, which implies $S^{-1}R$ is reduced.
\end{enumerate}
\end{prf}
\begin{definition}{Total Ring of Fractions}{}
Let $R$ be a commutative ring. Then $S=\left\{r\in R-\{0\}\mid r\text{ is not a zero divisor}\right\}$ is a multiplicative subset. The \textbf{total ring of fractions} of $R$ is the localization $S^{-1}R$, denoted by $\mathrm{Frac}(R)$. The localization map $\varphi:R\hookrightarrow \mathrm{Frac}(R)$ is an injective ring homomorphism.
\end{definition}
\begin{prf}
Since $0\notin S$ and $S$ contains no zero divisors, $\varphi$ is injective by (iii) of \Cref{th:prop_of_localization_of_rings}.
\end{prf}
\begin{proposition}{Properties of Total Ring of Fractions}{}
Let $R$ be a commutative ring and $S\subseteq R$ be a multiplicative subset. Then $S^{-1}R$ can be regarded as a subring of $\mathrm{Frac}(R)$.
\end{proposition}
\begin{prf}
By the universal property of localization, there exists a unique ring homomorphism $\psi:S^{-1}R\to \mathrm{Frac}(R)$. Since $\varphi:R\hookrightarrow \mathrm{Frac}(R)$ is injective, $\psi$ is also injective.
\end{prf}
\begin{definition}{Field of Fractions}{}
If $R$ be an integral domain, then $S=R-\{0\}$ is a multiplicative subset. The total ring of fractions $\mathrm{Frac}(R)=S^{-1}R=R_{(0)}$ is a field, call the \textbf{field of fractions} of $R$.
\end{definition}
\begin{definition}{Localization of an Ideal}{}
Let $R$ be a commutative ring, $S$ be a multiplicative set in $R$, and $I$ be an ideal of $R$. If we regard $I$ as a $R$-module, the \textbf{localization of the ideal} $I$ by $S$, denoted $S^{-1}I$, is the localization of the module $I$ by $S$. That is,
\[
S^{-1}I=\left\{\frac{a}{s}\midv a\in I, s\in S\right\}.
\]
$S^{-1}I$ is a $S^{-1}R$-submodule of $S^{-1}R$. Suppose the localization map is $l_S:R\to S^{-1}R$, $S^{-1}I$ can also defined as the ideal generated by $l_S(I)$ in $S^{-1}R$
\[
S^{-1}I=\langle l_S(I)\rangle=\left\{\frac{r}{s}\frac{a}{1}\midv a\in I, \frac{r}{s}\in S^{-1}R\right\}.
\]
\end{definition}
\begin{proposition}{Properties of Localization of Ideals}{properties_of_localization_of_ideals}
Let $R$ be a commutative ring, $S$ be a multiplicative set in $R$, and $0\notin S$. Suppose the localization map is $l_S:R\to S^{-1}R$. Then we have maps between the sets of ideals of $R$ and $S^{-1}R$:
\begin{align*}
\mathcal{I}(R)=\left\{\text{ideals of }R\right\}\xrightleftarrows[l_S^{-1}]{\quad S^{-1}\quad}
\left\{\text{ideals of }S^{-1}R\right\}=\mathcal{I}(S^{-1}R)
\end{align*}
\begin{enumerate}[(i)]
\item $S^{-1}\circ l_S^{-1}=\mathrm{id}_{\mathcal{I}(S^{-1}R)}$. As a result, $S^{-1}$ is surjective and $l_S^{-1}$ is injective.
\item For any ideal $J$ of $S^{-1}R$, there exists an ideal $I$ of $R$ such that $S^{-1}I=J$.
\item If $I$ is a ideal of $R$, then $S^{-1}I=S^{-1}R\iff I\cap S\ne\varnothing$.
\item $l_S$ induces a bijection between the set of prime ideals of $R$ that do not intersect $S$ and the set of prime ideals of $S^{-1}R$. That is, the following restriction of $S^{-1}$ and $l_S^{-1}$ are bijections:
\begin{align*}
\left\{I \in \operatorname{Spec}\left(R\right): I \cap S=\varnothing\right\} \xrightleftarrows[l_S^{-1}]{\quad S^{-1}\quad}
\spec\left(S^{-1}R\right)
\end{align*}
\item If $I$ is an ideal of $R$, then $S^{-1}\sqrt{I} = \sqrt{S^{-1}I}$.
\end{enumerate}
\end{proposition}
\begin{prf}
\begin{enumerate}[(i)]
\item Let $J$ be an ideal of $S^{-1}R$. We have
\[
S^{-1}l_S^{-1}(J)=\left\{\frac{x}{s}\midv x\in l_S^{-1}(J),s\in S\right\}=\left\{\frac{x}{s}\midv \frac{x}{1}\in J,s\in S\right\}=\left\{\frac{1}{s}\frac{x}{1}\midv \frac{x}{1}\in J,s\in S\right\}=J.
\]
\item It is a direct consequence of the surjectivity of $S^{-1}$.
\item Let $I$ be an ideal of $R$. We have
\[
S^{-1}I=S^{-1}R\iff \frac{1}{1} \in S^{-1}I \iff \exists t,s\in S,a\in I, t(a-s)=0\iff ta=ts\in I\cap S\ne\varnothing \iff I\cap S\ne\varnothing.
\]
\item Omitted.
\item For any $\frac{a}{s} \in S^{-1}\sqrt{I}$, there exists $n \in \mathbb{N}$ such that $a^n \in I$. Since $s^n \in S$, we have $\left(\frac{a}{s}\right)^n \in S^{-1}I$, which implies $\frac{a}{s} \in \sqrt{S^{-1}I}$. Hence $S^{-1}\sqrt{I} \subseteq \sqrt{S^{-1}I}$.
Conversely, for any $x \in \sqrt{S^{-1}I}$, since $\sqrt{S^{-1}I}$ is an ideal of $S^{-1}R$, there exists $a\in r$ and $s\in S$ such that $x=\frac{a}{s}$. $\frac{a}{s}\in \sqrt{S^{-1}I}$ means there exists $n \in \mathbb{N}$ such that $\left(\frac{a}{s}\right)^n \in S^{-1}I$. Thus there exists $t \in S$ and $b\in I$ such that $\left(\frac{a}{s}\right)^n =\frac{b}{t}$. And this is equivalent to $uta^n =ubs^n$ for some $u\in S$. Note $(uta)^n=u^nt^{n-1}s^nb\in I$, we have $uta\in\sqrt{I}$. Now we get $x=\frac{a}{s} =\frac{uta}{uts}\in S^{-1}\sqrt{I}$. Hence $\sqrt{S^{-1}I} \subseteq S^{-1}\sqrt{I}$.
\end{enumerate}
\end{prf}
\begin{proposition}{Localization Respects Quotients}{localization_at_ideal_respects_quotients}
Let $R$ be a commutative ring, $S$ be a multiplicative set in $R$, and $I$ be an ideal of $R$. Let $\pi_I:R\to R/I$ be the projection and $\overline{S}=\pi_I(S)$. Then we have an $R$-algebra isomorphism $\overline{S}^{-1}(R/I)\cong (S^{-1}R)/(S^{-1}I)$ and the following commutative diagram in $R\text{-}\mathsf{CAlg}$ (and accordingly in $\mathsf{CRing}$)
\[
\begin{tikzcd}
R \arrow[r, "\pi_I"] \arrow[d, "l_S"'] &[+5em] R/I \arrow[d, "l_S"] \\[+2em]
S^{-1}R \arrow[r, "\pi_{S^{-1}I}"'] & \overline{S}^{-1}(R/I)\cong (S^{-1}R)/(S^{-1}I)
\end{tikzcd}
\]
\end{proposition}
\begin{prf}
From \Cref{th:localization_respects_quotients} we get the commutative diagram in $R\text{-}\mathsf{Mod}$. Since localization map and quotient map are both ring homomorphisms, the commutative diagram holds in $R\text{-}\mathsf{CAlg}$.
\end{prf}
\begin{definition}{Localization at a Prime Ideal}{}
Let $R$ be a commutative ring and $\mathfrak{p}$ be a prime ideal of $R$. Then $S=R-\mathfrak{p}$ is a multiplicative set. The localization $S^{-1}R$ is called the \textbf{localization of $R$ at $\mathfrak{p}$}, denoted by $R_\mathfrak{p}$. $R_\mathfrak{p}$ is a local ring with unique maximal ideal
\[
\mathfrak{p}R_\mathfrak{p}=S^{-1}\mathfrak{p}=\left\{\frac{x}{s}\midv x\in \mathfrak{p}, s\in R-\mathfrak{p}\right\}.
\]
And we have field isomorphism $R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}\cong \mathrm{Frac}(R/\mathfrak{p})$. We call the field $R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}$ the \textbf{residue field} of $R$ at $\mathfrak{p}$ and denote it by $\kappa(\mathfrak{p})$.
\end{definition}
\begin{prf}
Note
\[
\{I \in \operatorname{Spec} R: I \cap S=\varnothing\}=\{I \in \operatorname{Spec} R: I \cap (R-\frak{p})=\varnothing\}=\{I \in \operatorname{Spec} R: I\subseteq \frak{p}\}.
\]
For any ideal $S^{-1}I \in \spec S^{-1}R$, where
$I\in \{I \in \operatorname{Spec} R: I \cap S=\varnothing\}$, we have $I\subseteq \mathfrak{p}$, which implies $S^{-1}I\subseteq S^{-1}\mathfrak{p}$. Thus we see $S^{-1}\mathfrak{p}$ is the unique maximal ideal of $S^{-1}R$.
According to \Cref{th:localization_at_ideal_respects_quotients}, we have an isomorphism $(R/\frak{p})_{\frak{p}}\cong R_\frak{p}/\frak{p}R_\frak{p}$ and the following commutative diagram in $R\text{-}\mathsf{CAlg}$
\[
\begin{tikzcd}
R \arrow[r, "\pi_\mathfrak{p}"] \arrow[d, "l_{R-\mathfrak{p}}"'] &[+5em] R/\mathfrak{p} \arrow[d, "l_{R-\mathfrak{p}}"] \\[+2em]
R_\mathfrak{p} \arrow[r, "\pi_{\mathfrak{p}\hspace{-1pt}R_\mathfrak{p}}"'] & \mathrm{Frac}(R/\mathfrak{p})\cong R_\mathfrak{p}/\mathfrak{p} R_\mathfrak{p}
\end{tikzcd}
\]
\end{prf}
\begin{lemma}{}{}
Let $R$ be a commutative ring and $\mathfrak{p}$ be a prime ideal of $R$. Suppose $l:R\to R_\mathfrak{p}$ is the localization map. Then we have
\[
l^{-1}\left(R_\mathfrak{p}^{\times}\right)=l^{-1}\left(R_\mathfrak{p}-\mathfrak{p} R_\mathfrak{p}\right)=R-\mathfrak{p}.
\]
\end{lemma}
\begin{proof}
Since \[
\mathfrak{p}R_\mathfrak{p}=\left\{\frac{x}{s}\midv x\in \mathfrak{p}, s\in R-\mathfrak{p}\right\},
\]
we have
\[
l^{-1}\left(R_\mathfrak{p}^{\times}\right)=l^{-1}\left(R_\mathfrak{p}-\mathfrak{p} R_\mathfrak{p}\right)=\left\{a\in R \midv \frac{a}{1}\notin \mathfrak{p}R_\mathfrak{p}\right\}=\left\{a\in R\midv a\notin \mathfrak{p}\right\}=R-\mathfrak{p}.
\]
\end{proof}
\begin{proposition}{}{}
Suppose $\varphi: R\to S$ is a commutative ring homomorphism. Let $\mathfrak{q}$ be a prime ideal of $S$. Then $\mathfrak{p}:=\varphi^{-1}(\mathfrak{q})$ is a prime ideal of $R$. And we have the following commutative diagram in $\mathsf{CRing}$:
\[
\begin{tikzcd}
R \arrow[r, "\varphi"] \arrow[d, "l_\mathfrak{p}"'] & S \arrow[d, "l_\mathfrak{q}"] \\
R_\mathfrak{p} \arrow[r, "\psi"', dashed] \arrow[d, "\pi_1"'] & S_{\mathfrak{q}} \arrow[d, "\pi_2"] \\
R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p} \arrow[r, "\eta"', dashed] & S_{\mathfrak{q}}/\mathfrak{q} S_{\mathfrak{q}}
\end{tikzcd}
\]
\end{proposition}
\begin{prf}
Note that
\[
(l_\mathfrak{q}\circ \varphi)^{-1}(S_{\mathfrak{q}}^\times)=\varphi^{-1}(l_\mathfrak{q}^{-1}(S_{\mathfrak{q}}^\times))=\varphi^{-1}(S-\mathfrak{q})=R-\varphi^{-1}(\mathfrak{q})=R-\mathfrak{p}.
\]
By the \hyperref[th:universal_property_of_localization]{universal property of localization}, since $R-\mathfrak{p}\subseteq (l_\mathfrak{q}\circ \varphi)^{-1}(S_{\mathfrak{q}}^\times)$, there exists a unique ring homomorphism
\begin{align*}
\psi:R_\mathfrak{p}&\longrightarrow S_{\mathfrak{q}}\\
\frac{a}{s}&\longmapsto \frac{\varphi(a)}{\varphi(s)}
\end{align*}
such that $l_\mathfrak{q}\circ \varphi=\psi\circ l_\mathfrak{p}$.
Since $\varphi(\mathfrak{p})=\varphi(\varphi^{-1}(\mathfrak{q}))\subseteq\mathfrak{q}$ and $\varphi(R-\mathfrak{p})=\varphi(\varphi^{-1}(S-\mathfrak{q}))\subseteq S-\mathfrak{q}$, we have
\[
\psi(\mathfrak{p}R_\mathfrak{p})=\left\{\frac{\varphi(x)}{\varphi(s)}\midv x\in \mathfrak{p}, s\in R-\mathfrak{p}\right\}\subseteq\left\{\frac{y}{t}\midv y\in \mathfrak{q}, t\in S-\mathfrak{q}\right\}=\mathfrak{q}S_{\mathfrak{q}} ,
\]
which means $\psi$ is a local ring homomorphism. Note that
\[
\psi(\mathfrak{p}R_\mathfrak{p})\subseteq \mathfrak{q}S_{\mathfrak{q}}=\ker \pi_2\implies \mathfrak{p}R_\mathfrak{p}\subseteq \psi^{-1}(\ker \pi_2)=\ker (\pi_2\circ \psi).
\]
By the \hyperref[th:universal_property_of_quotient_ring]{universal property of quotient ring}, there exists a unique ring homomorphism
\begin{align*}
\eta:R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}&\longrightarrow S_{\mathfrak{q}}/\mathfrak{q}S_{\mathfrak{q}}\\
\frac{a}{s}+\mathfrak{p}R_\mathfrak{p}&\longmapsto \frac{\varphi(a)}{\varphi(s)}+\mathfrak{q}S_{\mathfrak{q}}
\end{align*}
such that $\eta\circ \pi_1=\pi_2\circ \psi$. Hence we obtain the commutative diagram.
\end{prf}
\begin{proposition}{Localization of Integral Domain at a Prime Ideal}{}
Let $R$ be an integral domain and $\mathfrak{p}$ be a prime ideal of $R$. Then $R_\mathfrak{p}$ is an integral domain and we have
\[
R = \bigcap_{\mathfrak{p}\in \spec R} R_\mathfrak{p}= \bigcap_{\mathfrak{m}\in \mathrm{MaxSpec} R} R_\mathfrak{m}.
\]
\end{proposition}
\begin{prf}
First we need to show $R_\mathfrak{p}$ is an integral domain. Suppose $\frac{a}{s},\frac{b}{t}\in R_\mathfrak{p}$ such that $\frac{a}{s}\cdot\frac{b}{t}=\frac{ab}{st}=\frac{0}{1}$. Then there exists $u\in R-\mathfrak{p}$ such that $uab=0$. Since $R$ is an integral domain and $u\ne0$, either $a=0$ or $b=0$, which implies $R_\mathfrak{p}$ is an integral domain.\\
\end{prf}
\begin{example}{}{}
Let $R$ be a commutative ring and $f\in R$. Let $S=\{1,f,f^2,\cdots\}$ be the monoid generated by $f$. Then $S$ is a multiplicative set. The localization $S^{-1}R$ is called the \textbf{localization of $R$ at $f$}, denoted by $R_f$ or $R\left[\tfrac{1}{f}\right]$. The notation can be justified by the fact that $R\left[\tfrac{1}{f}\right]\cong R\left[t\right]/(ft-1)$.
$R_f=\{0\}$ if and only if $f$ is nilpotent.
\end{example}
\begin{prf}
$R_f=\{0\}\iff 0\in S\iff \exists n\in\mathbb{Z}_{\ge0},\;f^n=0$.
\end{prf}
\section{Commutative Ring Homomorphism}
\subsection{Commutative Ring Homomorphism of Finite Type}
\begin{definition}{Finite-type Commutative Algebra}{}
Let $R\to A$ be a commutative ring homomorphism. We say $A$ is a \textbf{finite-type $R$-algebra}, or that $R\to A$ is \textbf{of finite type}, if one of the following equivalent conditions holds:
\begin{enumerate}[(i)]
\item there exists a finite set of elements $a_1,\cdots,a_n$ of $A$ such that every element of $A$ can be expressed as a polynomial in $a_1,\cdots,a_n$, with coefficients in $R$.
\item there exists a finite set $X$ such that $A\cong R[X]/I$ as $R$-algebra where $I$ is an ideal of $R[X]$.
\end{enumerate}
\end{definition}
\subsection{Finite Commutative Ring Homomorphism}
\begin{definition}{Finite Commutative Ring Homomorphism}{}
Let $\varphi:R\to S$ be a homomorphism between two commutative rings. We say $\varphi$ is \textbf{finite} if $S$ as an $R$-module is finitely generated.
\end{definition}
\begin{definition}{Finitely Generated Commutative Algebra}{}
Let $R\to A$ be a commutative ring homomorphism. We say $A$ is a \textbf{finitely generated $R$-algebra} or $A$ is \textbf{finite} over $R$ if one of the following equivalent conditions holds:
\begin{enumerate}[(i)]
\item $R\to A$ is finite.
\item $A$ as an $R$-module is finitely generated.
\end{enumerate}
\end{definition}
\begin{proposition}{}{}
Let $\varphi:R\to S$ be a finite homomorphism between two commutative rings. Let $M$ be an $S$-module. Then $M$ is a finitely generated $R$-module if and only if $M$ is a finitely generated $S$-module.
\end{proposition}
\begin{proposition}{Composition of Finite Ring Homomorphisms is Finite}{}
Let $\varphi:R\to S$ and $\psi:S\to T$ be two finite homomorphisms between commutative rings. Then $\psi\circ\varphi:R\to T$ is also finite.
\end{proposition}
\begin{proposition}{Finite Generation Implies Finite Type}{finite_generation_implies_finite_type}
Let $A$ be a $R$-algebra. If $A$ is finitely generated as an $R$-module, then $A$ is a finite-type $R$-algebra.
\end{proposition}
\begin{prf}
This holds because if each element of $A$ can be expressed as an $R$-linear combination of finitely many elements of $A$, then each element of $A$ can also be expressed as a polynomial in finitely many elements of $A$ with coefficients in $R$.
An alternative proof can be given by utilizing the universal property of the free contruction. Suppose $A$ is finitely generated as an $R$-module. Then there exists some a finite set $X=\{x_1,\cdots,x_n\}$ and a surjective $R$-linear map $\varphi:R^{\oplus X}\to A$. Define $f=\varphi\circ \iota$, where $\iota:X\to R^{\oplus X}$ is the inclusion map.
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
R^{\oplus X}\arrow[r, dashed, "\exists !\,\widetilde{j}"] \&R[X]\arrow[r, dashed, "\exists !\,\widetilde{f}"] \& A\\[0.3cm]
\& X\arrow[ul, "\iota"] \arrow[u, "j"] \arrow[ru, "f:=\varphi\circ \iota"'] \&
\end{tikzcd}
\end{center}
The universal property of free $R$-module induces a unique $R$-linear map $\widetilde{j}:R^{\oplus}\to R[X]$ such that $j=\widetilde{j}\circ \iota$. And the universal property of free commutative $R$-algebra induces a unique $R$-algebra homomorphism $\widetilde{f}:R[X]\to A$ such that $f=\widetilde{f}\circ j$. Note $f=\varphi\circ \iota=\left(\widetilde{f}\circ \widetilde{j}\right)\circ \iota$. By the uniqueness of the universal property of $R^{\oplus}$, we have $\widetilde{f}\circ \widetilde{j}=\varphi$. Since $\widetilde{f}\circ \widetilde{j}$ is surjective, $\widetilde{f}$ must be surjective, which implies $A$ is a finite-type $R$-algebra.
\end{prf}
\begin{corollary}{Finite $\implies$ Finite Type}{}
Let $\varphi:R\to A$ be a finite homomorphism between two commutative rings. Then $\varphi$ is of finite type.
\end{corollary}
\begin{prf}
This is a reformulation of \Cref{th:finite_generation_implies_finite_type}.
\end{prf}
\begin{proposition}{Quotient Respect Finiteness}{quotient_and_localization_respect_finiteness}
Let $\varphi:R\to T$ be an finite homomorphism of commutative rings. Then
\begin{enumerate}[(i)]
\item Suppose $\mathfrak{b}$ is an ideal of $S$, and $\mathfrak{a}:=\varphi^{-1}(\mathfrak{b})$. Then $\overline{\varphi}:R/\mathfrak{a}\to T/\mathfrak{b}$ is finite.
\item Suppose $S$ is a multiplicative set of $R$, and $\widetilde{S}=\varphi(S)$. Then $\widetilde{\varphi}:S^{-1}R\to \widetilde{S}^{-1}T$ is finite.
\end{enumerate}
\end{proposition}
\begin{prf}
\begin{enumerate}[(i)]
\item Let $\mathfrak{a}:=\varphi^{-1}(\mathfrak{b})$. Since
\[
\ker (\pi_{\mathfrak{b}}\circ \varphi )= \varphi^{-1}\left(\ker \pi_{\mathfrak{b}}\right)=\varphi^{-1}\left(\mathfrak{b}\right)=\mathfrak{a},
\]
by the universal property of quotient ring, there is an injective ring homomorphism
\begin{align*}
\overline{\varphi}:R/\mathfrak{a}&\hookrightarrow T/\mathfrak{b}\\
r+\mathfrak{a}&\longmapsto \varphi(r)+\mathfrak{b}.
\end{align*}
such that the following diagram commutes
\[
\begin{tikzcd}