-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgroup.tex
1315 lines (1126 loc) · 71.6 KB
/
group.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Group}
\section{Basic Concepts}
\begin{definition}{Group}{}
A \textbf{group} is a set $G$ together with a binary operation $\cdot:G\times G\to G$ such that
\begin{enumerate}[(i)]
\item (Associativity) $\forall x,y,z\in G$, $(x\cdot y)\cdot z=x\cdot(y\cdot z)$.
\item (Identity) $\exists e\in G$ such that $\forall x\in G$, $e\cdot x=x\cdot e=x$.
\item (Inverse) $\forall x\in G$, $\exists x^{-1}\in G$ such that $x\cdot x^{-1}=x^{-1}\cdot x=e$.
\end{enumerate}
\end{definition}
Since the identity of a group is unique, we denote it by $1_G$ or simply $1$.
\begin{definition}{Opposite Group}{}
Let $G=(G,*)$ be a group. The \textbf{opposite group} of $G$ is the group $G^{\mathrm{op}}=(G,*^{\mathrm{op}})$, where $*^{\mathrm{op}}:G\times G\to G$ is defined by $x*^{\mathrm{op}}y=y\cdot x$. If we consider $G$ as a category $\mathsf{B}G$, then we have category isomorphism
\[
\mathsf{B}G^{\mathrm{op}}\cong (\mathsf{B}G)^{\mathrm{op}}.
\]
\end{definition}
\begin{proposition}{Group is Isomorphic to Its Opposite group}{}
$G$ is isomorphic to $G^{\mathrm{op}}$ through the isomorphism $x\mapsto x^{-1}$. This is same as saying that $\mathsf{B}G$ is isomorphic to $(\mathsf{B}G)^{\mathrm{op}}$ through the functor ${}^{\mathrm{op}}$ defined in \Cref{th:functor_op}.
\end{proposition}
\begin{definition}{Subgroup}{}
Let $G$ be a group. A subset $H$ of $G$ is called a \textbf{subgroup} of $G$ if $H$ is a group with respect to the binary operation of $G$. In this case, we write $H\le G$.
\end{definition}
\section{Group Homomorphism}
\begin{definition}{Group Homomorphism}{}
Let $G,H$ be groups. A \textbf{group homomorphism} from $G$ to $H$ is a function $\varphi:G\to H$ such that
\[
\forall x,y\in G,\quad \varphi(x y)=\varphi(x)\varphi(y).
\]
\end{definition}
\begin{definition}{Isomorphism}{}
Let $G,H$ be groups. A group homomorphism $\varphi:G\to H$ is called an \textbf{isomorphism} if $\varphi$ is bijective. In this case, we say that $G$ and $H$ are \textbf{isomorphic} and write $G\cong H$.
\end{definition}
\begin{proposition}{Properties of Group Homomorphisms}{}
Let $G,H$ be groups and $\varphi:G\to H$ be a group homomorphism. Then
\begin{enumerate}[(i)]
\item $\varphi(1_G)=1_H$.
\item $\forall x\in G$, $\varphi(x^{-1})=\varphi(x)^{-1}$.
\item $\forall n\in\mathbb{Z}$, $\varphi(x^n)=\varphi(x)^n$.
\item If $K\le G$ , then $\varphi(K)\le H$.
\item If $K\le H$, then $\varphi^{-1}(K)\le G$.
\end{enumerate}
\end{proposition}
\begin{definition}{Kernel of Group Homomorphism}{}
Let $\varphi:G\to H$ be a group homomorphism. The \textbf{kernel} of $\varphi$ is defined by
\[
\ker\varphi=\{x\in G\mid \varphi(x)=1_H\}.
\]
\end{definition}
\begin{proposition}{Property of Kernel}{}
Let $G$ be a group. Then
\begin{enumerate}[(i)]
\item Let $\varphi:G\to H$ be a group homomorphism. Then $\varphi$ is injective if and only if $\ker\varphi=\{1_G\}$.
\end{enumerate}
\end{proposition}
\begin{definition}{Normal Subgroup}{}
Let $G$ be a group. A subgroup $H$ of $G$ is called a \textbf{normal subgroup} if $gHg^{-1}=H$ for all $g\in G$. In this case, we write $H\lhd G$.
\end{definition}
\begin{proposition}{Equivalent Definition of Normal Subgroup}{}
Let $G$ be a group and $H$ be a subgroup of $G$. Then the following are equivalent:
\begin{enumerate}[(i)]
\item $H$ is a normal subgroup of $G$.
\item $\forall \gamma_g \in\mathrm{Inn}(G)$, $\gamma_g(H)\subseteq H$.
\item $gHg^{-1}\subseteq H$ for all $g\in G$.
\item $gHg^{-1}=H$ for all $g\in G$.
\item $gH=Hg$ for all $g\in G$.
\item $H$ is a union of conjugacy classes.
\item $H=\ker\varphi$ for some group homomorphism $\varphi:G\to K$.
\end{enumerate}
\end{proposition}
\begin{proposition}{Properties of Normal Subgroup}{}
Let $G$ be a group.
\begin{enumerate}[(i)]
\item $\{1_G\}$ and $G$ are normal subgroups of $G$.
\item If $H\le K\le G$ and $H\lhd G$, then $H\lhd K$.
\item If $H\lhd_{\rm char} K\lhd G$, then $H\lhd G$.
\item Normality is preserved under surjective homomorphisms: if $f:G \rightarrow H$ is a surjective group homomorphism and $N\lhd G$, then $f(N)\lhd H$.
\item Normality is preserved by taking inverse images of homomorphisms: if $f:G \rightarrow H$ is a group homomorphism and $N\lhd H$, then $f^{-1}(N)\lhd G$.
\item Normality is preserved on taking finite products: if $N_1 \lhd G_1$ and $N_2 \lhd G_2$, then $N_1 \times N_2 \lhd G_1 \times G_2$.
\item Given two normal subgroups, $N$ and $M$, of $G$, their intersection $N \cap M$ and their product $N M=\{n m: n \in N$ and $m \in M\}$ are also normal subgroups of $G$.
\end{enumerate}
\end{proposition}
\begin{definition}{Simple Group}{}
A group $G$ is called \textbf{simple} if $G$ is nontrivial and the only normal subgroups of $G$ are $\{1_G\}$ and $G$.
\end{definition}
\begin{theorem}{Fundamental Theorem on Homomorphisms}{}
Let $G,H$ be groups and $\varphi:G\to H$ be a group homomorphism. Define natural projection
\begin{align*}
\pi:G & \longrightarrow G/\ker\varphi \\
g & \longmapsto g\ker\varphi
\end{align*}
Then there exists a unique group homomorphism $\overline{\varphi}:G/\ker\varphi\to H$ such that the following diagram commutes
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
G \arrow[r, "\varphi"] \arrow[d, "\pi"'] \& H \\[0.3cm]
G/\ker\varphi \arrow[ru, dashed, "\exists!\,\overline{\varphi}"'] \&
\end{tikzcd}
\end{center}
Moreover, $\overline{\varphi}$ is injective and we have $ G/\ker\varphi\cong \mathrm{im}\varphi$.
\end{theorem}
\begin{corollary}{First isomorphism theorem}{}
Let $G,H$ be groups and $\varphi:G\to H$ be surjective group homomorphism. Then $G/\ker\varphi\cong H$.
\end{corollary}
\begin{proposition}{Universal Property of Quotient Group}{}
Let $G$ be a group and $N \lhd G$ be a normal subgroup. Suppose $\pi:G\to G/N$ is the natural projection. Then $\pi$ is initial in the category of group homomorphisms $\varphi:G\to H$ such that $N\subseteq \ker\varphi$. \\
That is, for any group $H$ and group homomorphism $\varphi:G\to H$ such that $N\subseteq \ker\varphi$, there exists a unique group homomorphism $\widetilde{\varphi}:G/N\to H$ such that the following diagram commutes
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
G \arrow[r, "\varphi"] \arrow[d, "\pi"'] \& H \\[0.3cm]
G/N \arrow[ru, dashed, "\exists !\,\widetilde{\varphi}"'] \&
\end{tikzcd}
\end{center}
\end{proposition}
\proof{
Since $N\subseteq \ker\varphi$, there is a canonical projection
\begin{align*}
p:G/N & \longrightarrow G/\ker\varphi \\
gN & \longmapsto g\ker\varphi
\end{align*}
According to the following diagram, we can define $\widetilde{\varphi}$ by $\widetilde{\varphi}=\overline{\varphi}\circ p$.
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
G \arrow[r, "\varphi"] \arrow[d, "\pi"'] \& H \\[0.4cm]
G/N \arrow[ru, dashed, "\widetilde{\varphi}"'] \arrow[r,"p"'] \& G/\ker\varphi \arrow[u, dashed, "\overline{\varphi}"']
\end{tikzcd}
\end{center}
}
\begin{theorem}{Second Isoomorphism Theorem}{}
Let $G$ be a group and $H,K$ be subgroups of $G$. Then $HK$ is a subgroup of $G$ and $H\cap K$ is a normal subgroup of $H$. Moreover, we have
\[
HK/H\cong K/(H\cap K).
\]
\end{theorem}
\section{Construction}
\subsection{Free Object}
Let $A$ be set. Define a \textbf{string} over the $A$ to be a finite sequence of elements of $A$. The \textbf{concatenation} of two strings $\overline{a_1\cdots a_n}$ and $\overline{b_1\cdots b_m}$ is a binary operation $\diamond$ defined by
\[
\overline{a_1\cdots a_n}\diamond \overline{b_1\cdots b_m}=\overline{a_1\cdots a_nb_1\cdots b_m}.
\]
\begin{definition}{Word}{}
Let $S$ be a set. Define $S^{-1}=\left\{s^{-1}\midv s\in S\right\}$. A \textbf{word} on $S$ is a string over $S\sqcup S^{-1}\sqcup\{1\}$. $\overline{1}$ is called an \textbf{empty word}. The \textbf{length} of a word $w$ is the number of letters in $w$.
\end{definition}
\begin{definition}{Reduced Word}{}
Let $W(S)$ be the set of all words on $S$. Define a relation $\approx$ on $W(S)$ as follows: for any $s\in S$
\begin{align*}
\overline{s^{-1}s}\approx \overline{1},\quad \overline{ss^{-1}}\approx \overline{1}, \quad \overline{1s}\approx s,\quad \overline{s1}\approx \overline{1}
\end{align*}
Define $\sim$ to be the equivalence relation generated by $\approx$. Let $\pi:W(S)\to W(S)/\sim, w\mapsto [w]_\sim$ denote the quotient map. It is easy to see that for any $[w]_\sim\in W(S)/\sim$, there exists a unique representative element $\rho(w)\in W(S)$ which has shortest length among all representatives of $[w]_\sim$. A word $w$ is called \textbf{reduced} if $\rho(w)=w$.
\end{definition}
\begin{definition}{Free Group}{}
Let $S$ be a set. The \textbf{free group} on $S$, denoted by $\mathrm{Free}_{\mathsf{Grp}}(S)$, together with a function $\iota:S\to \mathrm{Free}_{\mathsf{Grp}}(S)$, is defined by the following universal property: for any group $G$ and any function $f:S\to G$, there exists a unique group homomorphism $\widetilde{f}:\mathrm{Free}_{\mathsf{Grp}}(S)\to G$ such that the following diagram commutes
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
\mathrm{Free}_{\mathsf{Grp}}(S)\arrow[r, dashed, "\exists !\,\widetilde{f}"] \& G \\[0.3cm]
S\arrow[u, "\iota"] \arrow[ru, "f"'] \&
\end{tikzcd}
\end{center}
The free group $\mathrm{Free}_{\mathsf{Grp}}(S)$ can be contructed as follows: as a set it consists of all reduced words on $S$. The binary operation $\cdot$ is concatenation with reduction defined by
\[
w_1\cdot w_2 = \rho(w_1\diamond w_2).
\]
The identity element is the empty word. The inverse of a word is obtained by reversing the order of the letters and replacing each letter by its inverse.
\end{definition}
\begin{example}{Forgetful Functor $U:\mathsf{Grp}\to \mathsf{Set}$}{}
The forgetful functor $U:\mathsf{Grp}\to \mathsf{Set}$ forgets the group structure of a group and returns the underlying set.
\begin{enumerate}[(i)]
\item $U$ is representable by $\left(\mathbb{Z},1\right)$. The natural isomorphism $\phi:\mathrm{Hom}_{\mathsf{Grp}}\left(\mathbb{Z},-\right)\xRightarrow{\sim} U$ is given by
\begin{align*}
\phi_G:\mathrm{Hom}_{\mathsf{Grp}}\left(\mathbb{Z},G\right) & \xlongrightarrow{\sim} U(G) \\
f & \longmapsto f(1).
\end{align*}
A group homomorphism from $\mathbb{Z}$ to $G$ is uniquely determined by its action on $1$.
\item $U$ is faithful but not full.
\end{enumerate}
\end{example}
\begin{prf}
\begin{enumerate}[(i)]
\item $\phi:\mathrm{Hom}_{\mathsf{Grp}}\left(\mathbb{Z},-\right)\xRightarrow{\sim} U$ is the composition of the following natural isomorphisms
\[
\mathrm{Hom}_{\mathsf{Grp}}\left(\mathbb{Z},-\right)\cong\mathrm{Hom}_{\mathsf{Grp}}(\mathrm{Free}_{\mathsf{Grp}}(\{*\}),-)\cong \mathrm{Hom}_{\mathsf{Set}}(\{*\},U(-))\cong U.
\]
\item $U$ is not full because not every mapping $f:\mathbb{Z}\to G$ is a group homomorphism.
\end{enumerate}
\end{prf}
\begin{proposition}{Free-Forgetful Adjunction $\mathrm{Free}_{\mathsf{Grp}}\dashv U$}{}
The free group functor $\mathrm{Free}_{\mathsf{Grp}}$ is left adjoint to the forgetful functor $U:\mathsf{Grp}\to \mathsf{Set}$
$$
\begin{tikzcd}[ampersand replacement=\&]
\mathsf{Set} \arrow[rr, "\mathrm{Free}_{\mathsf{Grp}}", bend left] \&[-10pt]\bot\&[-10pt] \mathsf{Grp} \arrow[ll, "U", bend left]
\end{tikzcd}
$$
The adjunction isomorphism is given by
\begin{align*}
\varphi_{S,G}:\mathrm{Hom}_{\mathsf{Grp}}(\mathrm{Free}_{\mathsf{Grp}}(S),G) & \xlongrightarrow{\sim} \mathrm{Hom}_{\mathsf{Set}}(S,U(G)) \\
g & \longmapsto g\circ \iota
\end{align*}
\end{proposition}
\begin{prf}
First we show that $\varphi_{S,G}$ is injective. Suppose $g_1,g_2:\mathrm{Free}_{\mathsf{Grp}}(S)\to G$ are two group homomorphisms such that $g_1\circ \iota=g_2\circ \iota$. By the universal property of free group, we have $g_1=g_2$. Then we show that $\varphi_{S,G}$ is surjective. Suppose $f:S\to U(G)$ is a function. By the universal property there exists a group homomorphism $\widetilde{f}:\mathrm{Free}_{\mathsf{Grp}}(S)\to G$ such that $\varphi_{S,G}(\widetilde{f})=\widetilde{f}\circ \iota=f$. Finally, we show that $\varphi_{S,G}$ is natural in $S$ and $G$. Suppose $h:S_1\to S_2$ is a function and $q:G_1\to G_2$ is a group homomorphism. Then we can check that for any $g\in \mathrm{Hom}_{\mathsf{Grp}}(\mathrm{Free}_{\mathsf{Grp}}(S_2),G_2)$,
\begin{align*}
\varphi_{S_1,G_1}(q\circ g\circ \iota_{S_1}) & =(q\circ g\circ \iota_{S_1})\circ \iota_{S_1} \\
& =q\circ g\circ (\iota_{S_1}\circ \iota_{S_1}) \\
& =q\circ g\circ \iota_{S_2} \\
& =\varphi_{S_2,G_2}(g\circ \iota_{S_2}).
\end{align*}
\end{prf}
\subsection{Inverse Limit}
\begin{definition}{Inverse Limit in $\mathsf{Grp}$}{inverse_limit_of_groups}
Let $\mathsf{I}$ be a \hyperref[th:filtered_category]{filtered} \hyperref[th:thin_category]{thin category} and $F:\mathsf{I}^{\mathrm{op}}\to \mathsf{Grp}$ be a functor. To unpack the information of $F$, denote $I:=\mathrm{Ob}(\mathsf{I})$, $G_i:=F(i)$ and $f_{ij}:=F(i\to j)$. An \textbf{inverse system} is a pair $\left(\left(G_i\right)_{i \in I},\left(f_{i j}\right)_{i \leq j \in I}\right)$ where $f_{i j}: G_{j} \rightarrow G_{i}$ is a group homomorphism for each $i \leq j$ such that
\begin{enumerate}[(i)]
\item $f_{i i}=\mathrm{id}_{G_i}$ for all $i \in I$.
\item $f_{i k}=f_{i j} \circ f_{j k}$ for all $i \leq j \leq k$.
\end{enumerate}
The \textbf{inverse limit} of $\left(\left(G_i\right)_{i \in I},\left(f_{i j}\right)_{i \leq j \in I}\right)$ is the cofiltered limit $\varprojlim F$, also denoted by $\varprojlim_{i\in I}G_i$, which can be constructed as a subgroup of $\prod_{i \in I} G_{i}$ as follows
\[
\varprojlim_{i\in I}G_i \cong \left\{(x_i)_{i\in I}\in \prod_{i \in I} G_{i}\midv x_i=f_{ij}(x_j) \text{ for all }i\le j \in I\right\}
\]
equipped with natural projections $\pi_i:\varprojlim_{i\in I}G_i\to G_i$.\\
\end{definition}
\begin{example}{Inverse Limit $\varprojlim_{i\ge 1}G_i$}{}
Let $\mathsf{I}=\left(\mathbb{Z}_{\ge 1},\le\right)$ be a filtered thin category and $F:\mathsf{I}^{\mathrm{op}}\to \mathsf{Grp}$ be a functor. To determine an inverse system, it is sufficient to specify $G_i$ and $f_{i,i+1}:G_{i+1}\to G_i$ for all $i\in \mathbb{Z}_{\ge 1}$. The inverse limit of this inverse system is denoted by $\varprojlim_{i\ge 1}G_i$, which we now write as $G$ for simplicity.\\
$G$ can be imaged as a tree with root layer being $G_0=\{1\}$ and $i$-th layer being $G_i$. Each node in $G_i$ has a unique parent node in $G_{i-1}$, which is determined by $f_{i,i-1}$. An element in $G$ is a path starting from the root and passing through each $G_i$ exactly once along the edges of the tree. The $i$-th component $x_i$ of an element $x\in G$ includes all information of its history path from $G_0$ to $G_i$, which makes $x_1,x_2,\cdots, x_{i-1}$ redundant.
\end{example}
\section{Group Action}
\subsection{Definitions}
\begin{definition}{Symmetric Group}{}
The \textbf{symmetric group} on a set $X$ is the group whose elements are all bijections from $X$ to $X$, with the group operation of function composition. The symmetric group on $X$ is denoted by $\mathrm{Sym}(X)$ or $\mathrm{Aut}_{\mathsf{Set}}(X)$. If $X=\{1,2,\cdots,n\}$, then we denote $\mathrm{Sym}(X)$ by $S_n$.
\end{definition}
\begin{definition}{Group Action}{}
Let $G$ be a group and $X$ be a set. A \textbf{group action} of $G$ on $X$ is a group homomorphism
\begin{align*}
\sigma:G & \longrightarrow \mathrm{Aut}_{\mathsf{Set}}(X) \\
g & \longmapsto \sigma_g
\end{align*}
If $G$ acts on $X$ by $\sigma$, we say $(X,\sigma)$ is a \textbf{$G$-set}. If there is no ambiguity, we simply say $X$ is a $G$-set.
\end{definition}
\begin{proposition}{Equivalent Definition of Group Actions}{}
Let $G$ be a group and $X$ be a set. A group action of $G$ on $X$ can be alternatively defined as a map
\begin{align*}
\cdot:G\times X & \longrightarrow X \\
(g,x) & \longmapsto g\cdot x
\end{align*}
such that
\begin{enumerate}[(i)]
\item $\forall x\in X$, $e\cdot x=x$.
\item $\forall g,h\in G$, $\forall x\in X$, $(gh)\cdot x=g\cdot(h\cdot x)$.
\end{enumerate}
The equivalence of the two definitions is given by
\[
\sigma_g(x)=g\cdot x.
\]
\end{proposition}
We say $X$ is a right $G$-set if $X$ is a left $G^{\mathrm{op}}$-set.
\begin{definition}{$G$-equivariant Map}{}
Let $G$ be a group and $(X,\sigma)$, $(Y,\sigma')$ be $G$-sets. A map $f:X\to Y$ is called \textbf{$G$-equivariant} if for all $g\in G$ and $x\in X$, we have
\[
f(g\cdot x)=g\cdot f(x) .
\]
Equivalently, $f$ is $G$-equivariant if it is a natural transformation $f:\sigma(-)\implies \sigma'(-)$ such that for any $g\in G$, the following naturality diagram commutes
\[
\begin{tikzcd}[ampersand replacement=\&, column sep=1.7em, row sep=small]
\mathsf{B}G \& \bullet \arrow[rr, "g"] \& \& \bullet \\
\& X \arrow[dd, "f"'] \arrow[rr, "\sigma_g"] \& \& X \arrow[dd, "f"] \\
\mathsf{Set} \& \& \& \\
\& Y \arrow[rr, "\sigma'_g"'] \& \& Y
\end{tikzcd}
\]
\end{definition}
\begin{definition}{Category of $G$-sets}{}
The categories of left $G$-sets, denoted by $G\text{-}\mathsf{Set}$, are defined as follows:
\begin{itemize}
\item Objects: $G$-sets.
\item Morphisms: $G$-equivariant maps.
\item Composition of morphisms is the composition of functions.
\end{itemize}
$G\text{-}\mathsf{Set}$ can be identified with the functor category $[\mathsf{B}G,\mathsf{Set}]$, given by the following isomorphism of categories
\begin{align*}
G\text{-}\mathsf{Set} & \stackrel{\sim}{\longrightarrow}[\mathsf{B}G, \mathsf{Set}] \\
(X,\sigma ) & \longmapsto \left(\bullet \rightarrow X,\;\, \sigma:G\to \mathrm{Aut}_{\mathsf{Set}}(X)\right)
\end{align*}
\end{definition}
\begin{example}{Trivial Group Action}{}
Let $G$ be a group and $X$ be a set. The \textbf{trivial group action} of $G$ on $X$ is defined as $\sigma_g=\mathrm{id}_X$ for all $g\in G$.
\end{example}
\begin{example}{Actions on $X$ Induce Actions on $2^X$}{acting_on_power_set}
If a group $G$ acts on a set $X$, then $G$ acts on the power set $2^X$ by
\[
g\cdot A=\{ g\cdot x\mid x\in A\} .
\]
\end{example}
\begin{definition}{Product of $G$-Sets}{}
The \textbf{product} of two $G$-sets $X$ and $Y$ is defined as the set $X\times Y$ with the $G$-action
\[
g\cdot (x,y)=(g\cdot x, g\cdot y) .
\]
Alternatively, the product of two $G$-sets can be defined as the product of two functors, cf. \Cref{th:ev_functor_preserves_limits}.
\end{definition}
\begin{definition}{Coproduct of $G$-Sets}{}
The \textbf{coproduct} of two $G$-sets $X$ and $Y$ is defined as the set $X\sqcup Y$ with the $G$-action
\[
g\cdot a=\begin{cases}
g\cdot a & a\in X \\
g\cdot a & a\in Y
\end{cases}
\]
Alternatively, the coproduct of two $G$-sets can be defined as the coproduct of two functors, cf. \Cref{th:ev_functor_preserves_limits}.
\end{definition}
\begin{example}{$\mathrm{Aut}_\mathsf{C}(X)$ acts on $\mathrm{Hom}_\mathsf{C}(X,Y)$ and $\mathrm{Hom}_\mathsf{C}(Y,X)$}{aut_acts_on_hom}
Let $X$ and $Y$ be objects in a category $\mathsf{C}$. Then $\mathrm{Aut}_\mathsf{C}(X)$ acts on $\mathrm{Hom}_\mathsf{C}(X,Y)$ by the composition of functors
\[
\begin{tikzcd}[ampersand replacement=\&, column sep=5em, row sep=3em]
\mathsf{B}\mathrm{Aut}_\mathsf{C}(X)\arrow[r,"{(-)}^{-1}"] \&[-3em] \mathsf{B}\mathrm{Aut}_\mathsf{C}(X)^{\mathrm{op}} \arrow[r, hook] \&[-2em] \mathsf{C}^{\mathrm{op}} \arrow[r, "{\mathrm{Hom}_{\mathsf{C}}(-,Y)}"] \& \mathsf{Set}\\[-2.3em]
\bullet \arrow[r, maps to] \arrow[d, "g"'] \& \bullet \arrow[r, maps to] \arrow[d, "g^{-1}"] \& X \arrow[d, "g^{-1}"] \arrow[r, maps to] \& {\mathrm{Hom}(X,Y)} \arrow[d, "\left(g^{-1}\right)^*"] \\
\bullet \arrow[r, maps to] \& \bullet \arrow[r, maps to] \& X \arrow[r, maps to] \& {\mathrm{Hom}(X,Y)}
\end{tikzcd}
\]
Writing explicily, the action is given by
\begin{align*}
\mathrm{Aut}_\mathsf{C}(X)\times \mathrm{Hom}_\mathsf{C}(X,Y) & \longrightarrow \mathrm{Hom}_\mathsf{C}(X,Y) \\
(g,f) & \longmapsto f\circ g^{-1}
\end{align*}
Similarly, $\mathrm{Aut}_\mathsf{C}(Y)$ acts on $\mathrm{Hom}_\mathsf{C}(Y,X)$ by
\[
\begin{tikzcd}[ampersand replacement=\&, column sep=5em, row sep=3em]
\mathsf{B}\mathrm{Aut}_\mathsf{C}(X)\arrow[r, hook] \&[-1em] \mathsf{C} \arrow[r, "{\mathrm{Hom}_{\mathsf{C}}(Y,-)}"] \& \mathsf{Set}\\[-2.3em]
\bullet \arrow[r, maps to] \arrow[d, "g"'] \& X \arrow[d, "g"] \arrow[r, maps to] \& {\mathrm{Hom}(Y,X)} \arrow[d, "g_*"] \\
\bullet \arrow[r, maps to] \& X \arrow[r, maps to] \& {\mathrm{Hom}(X,Y)}
\end{tikzcd}
\]
Writing explicily, the action is given by
\begin{align*}
\mathrm{Aut}_\mathsf{C}(Y)\times \mathrm{Hom}_\mathsf{C}(Y,X) & \longrightarrow \mathrm{Hom}_\mathsf{C}(Y,X) \\
(g,f) & \longmapsto g\circ f
\end{align*}
\end{example}
\begin{example}{Actions on $X$ Induce Actions on $\mathrm{Hom}_{\mathsf{Set}}(X,Y)$}{acting_on_functions}
If $G$ acts on $X$ through a functor $\sigma(-):\mathsf{B}G\to\mathsf{Set}$, then it also acts on $\mathrm{Hom}_{\mathsf{Set}}(X,Y)$ for any set $Y$ by the composition of functors
\[
\begin{tikzcd}[ampersand replacement=\&, column sep=5em, row sep=3em]
\mathsf{B}G \arrow[r,"{(-)}^{-1}"] \&[-2em] \mathsf{B}G^{\mathrm{op}} \arrow[r, "\sigma(-)^{\mathrm{op}}"] \&[-2.2em] \mathsf{Set}^{\mathrm{op}} \arrow[r, "{\mathrm{Hom}_{\mathsf{Set}}(-,Y)}"] \& \mathsf{Set}
\end{tikzcd}
\]
The left action on $\mathrm{Hom}_{\mathsf{Set}}(X,Y)$ is given explicitly as follows: for all $g\in G$, $f\in \mathrm{Hom}_{\mathsf{Set}}(X,Y)$ and $x\in X$,
\[
(g\cdot f)(x)=f(g^{-1}\cdot x).
\]
Equivalently, the right action $\star$ on $\mathrm{Hom}_{\mathsf{Set}}(X,Y)$ is given by
\[
(f\star g)(x)=f(g\cdot x).
\]
\end{example}
\begin{prf}
We can check that
\begin{align*}
(g_1\cdot (g_2\cdot f))(x) & =\left(g_2\cdot f\right)\left(g_1^{-1}\cdot x\right) \\
& =\left(g_2\cdot f\right)\left(g_1^{-1}\cdot x\right) \\
& =f\left(g_2^{-1}\cdot\left(g_1^{-1}\cdot x\right)\right) \\
& =f\left(\left(g_2^{-1} g_1^{-1}\right)\cdot x\right) \\
& =\left(\left(g_1g_2\right)\cdot f\right)(x).
\end{align*}
and also check that
\begin{align*}
((f\star g_1)\star g_2)(x)
& =\left(f\star g_1\right)\left(g_2\cdot x\right) \\
& =f\left(g_1\cdot\left(g_2\cdot x\right)\right) \\
& =f\left((g_1g_2)\cdot x\right) \\
& =\left(f\star (g_1 g_2)\right)(x).
\end{align*}
\end{prf}
\begin{definition}{Orbit of a Group Action}{}
Let $G$ be a group acting on a set $X$. For $x\in X$, the \textbf{orbit} of $x$ is defined as
\[
G x=\{ g\cdot x\mid g\in G\} .
\]
\end{definition}
\begin{definition}{Orbit Space}{}
Let $G$ be a group acting on a set $X$. The \textbf{orbit space} of $G$ acting on $X$ is defined as
\[
G\backslash X=\{ Gx\mid x\in X\}.
\]
\end{definition}
If $G$ acts on $X$, then $G$ acts on $G\backslash X$ trivially by $g\cdot Gx=Gx$.
\begin{proposition}{Orbit Decomposition}{}
Let $G$ be a group acting on a set $X$. We define a equivalence relation $\sim$ on $X$ by
\[
x\sim y \iff Gx=Gy.
\]
Then the equivalence class of $x$ is exactly $Gx$. The quotient set $X/\sim$ is exactly the orbit space $G\backslash X$.
And we have a partition of $X$ by the orbits of $G$ acting on $X$
\[
X=\bigsqcup_{Gx\in G\backslash X}Gx.
\]
\end{proposition}
\begin{prf}
We can check that the equivalence class of $x$ is $Gx$. If $y\sim x$, then $y\in Gy=Gx$. If $y\in Gx$, then $Gy\subseteq Gx$ and $x\in Gy$. Note $x\in Gy$ implies $Gx\subseteq Gy$. We have $Gx=Gy$, i.e. $x\sim y$.
\end{prf}
If $G$ acts on $X$, then $G$ acts on $G\backslash X$ trivially.
\begin{definition}{$G$-invariant element }{}
Let $G$ be a group acting on a set $X$. An element $x\in X$ is called \textbf{$G$-invariant} if $Gx=\{ x\}$ or equivalently $|Gx|=1$. The set of all $G$-invariant elements is denoted by $X^G$
\[
X^G=\{ x\in X\mid Gx=\{ x\} \} = \{ x\in X\mid \forall g\in G, g\cdot x=x \} .
\]
\end{definition}
\begin{definition}{Stabilizer Subgroup}{}
Let $G$ be a group acting on a set $X$. For $x\in X$, the \textbf{stabilizer subgroup} of of $G$ with respect to $x$ is defined as
\[
\mathrm{Stab}_G(x)=\{ g\in G\mid g\cdot x=x\} .
\]
It is easy to see that $\mathrm{Stab}_G(x)$ is a subgroup of $G$.
\end{definition}
\begin{proposition}{Properties of Stabilizer Subgroup}{properties_of_stabilizer_subgroup}
Let $G$ be a group acting on a set $X$. For $x\in X$, the stabilizer subgroup $\mathrm{Stab}_G(x)$ has the following properties
\begin{enumerate}[(i)]
\item $x\in X^G\iff \mathrm{Stab}_G(x)=G$.
\item $\ker \left(G\to \mathrm{Aut}_{\mathsf{Set}}(X)\right)=\bigcap\limits_{x\in X}\mathrm{Stab}_G(x)$.
\item $\mathrm{Stab}_G(gx)=g\mathrm{Stab}_G(x)g^{-1}$ for any $g\in G$. Hence, we have a bijection between the $G$-orbit of $x$ and the conjugacy class of stabilizer subgroup $\mathrm{Stab}_G(x)$
\begin{align*}
Gx&\xlongrightarrow{\sim} \mathrm{Cl}(\mathrm{Stab}_G(x))\\
gx&\longmapsto g\mathrm{Stab}_G(x)g^{-1}
\end{align*}
\item $\mathrm{Stab}_G(gx)=\mathrm{Stab}_G(x)\iff g\in \mathrm{N}_G(\mathrm{Stab}_G(x))$.
\end{enumerate}
If $X \curvearrowleft G$ is a right action, then we have $\mathrm{Stab}_G(xg)=g^{-1}\mathrm{Stab}_G(x)g$ for any $g\in G$.
\end{proposition}
\begin{proof}
\begin{enumerate}[(i)]
\item
$$
x \in X^G \iff \forall g \in G, gx = x \iff \mathrm{Stab}_G(x) = G.
$$
\item
$$
g \in \ker \left(G \to \mathrm{Aut}_{\mathsf{Set}}(X) \right) \iff \forall x \in X ,\; gx = x \iff g \in \bigcap_{x \in X} \mathrm{Stab}_G(x).
$$
\item Let $h \in \mathrm{Stab}_G(gx)$, meaning $h(gx) = gx$.
Applying $g^{-1}$ to both sides, we get $g^{-1}h(gx) = g^{-1}(gx)=x$. Thus, $g^{-1}hg \in \mathrm{Stab}_G(x)$, meaning $h \in g \mathrm{Stab}_G(x) g^{-1}$.
Conversely, if $h \in g \mathrm{Stab}_G(x) g^{-1}$, then $h = g k g^{-1}$ for some $k \in \mathrm{Stab}_G(x)$. Therefore, $h(gx) = g(kx) = gx$, so $h \in \mathrm{Stab}_G(gx)$.
Thus, $\mathrm{Stab}_G(gx) = g \mathrm{Stab}_G(x) g^{-1}$.
\item
\[
\mathrm{Stab}_G(gx)=\mathrm{Stab}_G(x)\iff g\mathrm{Stab}_G(x)g^{-1}= \mathrm{Stab}_G(x) \iff g\in \mathrm{N}_G(\mathrm{Stab}_G(x)).
\]
\end{enumerate}
\end{proof}
\begin{definition}{Faithful Group Action}{}
Let $G$ be a group acting on a set $X$. The action is called \textbf{faithful} if any of the following equivalent conditions holds
\begin{enumerate}[(i)]
\item $G\to \mathrm{Aut}_{\mathsf{Set}}(X)$ is injective.
\item $\bigcap\limits_{x\in X}\mathrm{Stab}_G(x)=\{ 1_G\}$.
\item $\forall x\in X,\;g\cdot x=x\implies g=1_G$.
\end{enumerate}
\end{definition}
For any group action, we can always make it faithful by quotienting out the kernel of $G\to \mathrm{Aut}_{\mathsf{Set}}(X)$.
\begin{definition}{Free Group Action}{}
Let $G$ be a group acting on a set $X$. The action is called \textbf{free} if any of the following equivalent conditions holds
\begin{enumerate}[(i)]
\item For all $x\in X$, $\mathrm{Stab}_G(x)=\{ 1_G\}$ .
\item $\exists x\in X,\;g\cdot x=x\implies g=1_G$.
\end{enumerate}
\end{definition}
It is clear that a free action is faithful, but the converse does not hold in general. For example, the dihedral group $D_3$ acts on an equilateral triangle faithfully but not freely, since the reflections fix one vertex and swap the other two.
\begin{definition}{Transitive Group Action}{}
Let $G$ be a group acting on a set $X$. The action is called \textbf{transitive} if any of the following equivalent conditions holds
\begin{enumerate}[(i)]
\item For any $x,y\in X$, there exists $g\in G$ such that $g\cdot x=y$.
\item $X$ has only one orbit, i.e. $X= Gx$ for any $x\in X$.
\end{enumerate}
If $G$ acts transitively on $X$, then $X$ is called a \textbf{transitive $G$-set} or \textbf{homogeneous space for $G$}.
\end{definition}
The following proposition shows that we can understand a group action on a set $X$ by studying the group action on each $G$-orbit $Gx$ separately.
\begin{proposition}{$G$ Acts on Orbit $Gx$ Transitively}{}
Let $G$ be a group acting on a set $X$ and $x\in X$. Then $G$ acts on the orbit $Gx$ by left multiplication transitively. And we have a $G$-set isomorphism
\[
X\cong \bigsqcup_{Gx\in G\backslash X}Gx,
\]
which decomposes any $G$-set into coproduct of transitive $G$-sets.
\end{proposition}
\begin{proposition}{Properties of $G$-equivariant Maps between Transitive $G$-sets}{properties_of_equivariant_maps_between_transitive_sets}
Let $G$ be a group acting on a set $X$ and $Y$ transitively. Then we have
\begin{enumerate}[(i)]
\item Any $G$-equivariant map $f:X\to Y$ is uniquely determined by its value at one point $x\in X$:
\[
f(g\cdot x)=g\cdot f( x),\quad \forall g\in G.
\]
\item If $X\ne \varnothing$, then any $G$-equivariant map $f:X\to Y$ is surjective.
\item Assume $x\in X$ and $y\in Y$. Then the following are equivalent:
\begin{enumerate}[a)]
\item There exists a unique $G$-equivariant map $f:X\to Y$ such that $f(x)=y$.
\item There exists a unique $G$-equivariant map $p:G/\mathrm{Stab}_G(x)\to G/\mathrm{Stab}_G(y)$ such that $p(\mathrm{Stab}_G(x))=\mathrm{Stab}_G(y)$.
\item $\mathrm{Stab}_G(x)\subseteq \mathrm{Stab}_G(y)$.
\end{enumerate}
\end{enumerate}
\end{proposition}
\begin{prf}
\begin{enumerate}[(i)]
\item For any $x'\in X$, we can assume $x'=g\cdot x$ for some $g\in G$. Since $f$ is $G$-equivariant, we have
\[
f(g\cdot x)=g\cdot f(x).
\]
\item Suppose $x\in X$, and $y=f(x)\in Y$. For any $y'\in Y$, we can assume $y'=g\cdot y$ for some $g\in G$. And we have
\[
f(g\cdot x)=g\cdot f(x)=g\cdot y=y'.
\]
\item a)$\implies$c). Suppose $f:X\to Y$ is a $G$-equivariant map such that $f(x)=y$. For any $g\in \mathrm{Stab}_G(x)$, we have
\[
gy=g f(x)=f(gx)=f(x)=y,
\]
which implies $g\in \mathrm{Stab}_G(y)$. Thus we show that $\mathrm{Stab}_G(x)\subseteq \mathrm{Stab}_G(y)$.
c)$\implies$a). suppose $\mathrm{Stab}_G(x)\subseteq \mathrm{Stab}_G(y)$. We can define $f:X\to Y$ by $f(g\cdot x)=g\cdot y$. It is well-defined since
\[
g_1\cdot x=g_2 \cdot x\implies g_2^{-1}g_1\in \mathrm{Stab}_G(x)\implies g_2^{-1}g_1\in \mathrm{Stab}_G(y)\implies g_1\cdot y=g_2\cdot y.
\]
a)$\iff$b). It is a direct consequence of \Cref{th:iso_stab_orbit}.
\end{enumerate}
\end{prf}
\begin{corollary}{$G$-maps between Left Coset Spaces}{}
Suppose $H,K$ are subgroups of $G$. Then we know $G$ left acts on $G/H$ and $G/K$.
\begin{enumerate}[(i)]
\item If $\alpha: G / H \longrightarrow G / K$ is a $G$-map, then $\alpha$ has the form $\alpha(g H)=g r K$, where the element $r \in G$ satisfies $H \subseteq rKr^{-1} $.
\item If there exists $r \in G$ such that $H \subseteq rK r^{-1} $, then the map $\alpha: G / H \longrightarrow G / K$ defined by $\alpha(g H)=g r K$ is a $G$-map.
\end{enumerate}
\end{corollary}
\begin{prf}
\begin{enumerate}[(i)]
\item Suppose $\alpha: G / H \longrightarrow G / K$ is a $G$-map and $\alpha(H)=r K$. The equivariance condition gives $\alpha(g H)=g r K$. And By \Cref{th:properties_of_equivariant_maps_between_transitive_sets}, we have
\[
H=\mathrm{Stab}_G(H)\subseteq \mathrm{Stab}_G(rK)=r\mathrm{Stab}_G(K)r^{-1}=rKr^{-1}.
\]
\item If there exists $r \in G$ such that
\[
H=\mathrm{Stab}_G(H)\subseteq r\mathrm{Stab}_G(K)r^{-1}=\mathrm{Stab}_G(rK),
\]
then by \Cref{th:properties_of_equivariant_maps_between_transitive_sets}, there exists a unique $G$-map $\alpha:G/H\to G/K$ such that $\alpha(H)=rK$. Thus $\alpha(gH)=g rK$ for all $g\in G$.
\end{enumerate}
\end{prf}
\begin{proposition}{Transitive $G$-set Isomorphism Criterion}{}
Suppose $X$, $Y$ are transitive $G$-sets and $x\in X$, $y\in Y$. Then we have
\begin{enumerate}[(i)]
\item There exists a $G$-set isomorphism $f:X\xrightarrow{\sim} Y$ such that $f(x)=y$ if and only if $\mathrm{Stab}_G(x)=\mathrm{Stab}_G(y)$.
\item $X\cong Y$ as $G$-sets if and only if $\mathrm{Stab}_G(x)$ and $\mathrm{Stab}_G(y)$ are conjugate subgroups in $G$.
\end{enumerate}
\end{proposition}
\begin{prf}
\begin{enumerate}[(i)]
\item Suppose there exists a $G$-set isomorphism $f:X\xrightarrow{\sim} Y$ such that $f(x)=y$. Then $f^{-1}:Y\xrightarrow{\sim} X$ is also a $G$-set isomorphism such that $f^{-1}(y)=x$. By \Cref{th:properties_of_equivariant_maps_between_transitive_sets}, we have both $\mathrm{Stab}_G(x)\subseteq \mathrm{Stab}_G(y)$ and $\mathrm{Stab}_G(y)\subseteq \mathrm{Stab}_G(x)$, which implies $\mathrm{Stab}_G(x)=\mathrm{Stab}_G(y)$.
Conversely, suppose $\mathrm{Stab}_G(x)=\mathrm{Stab}_G(y)$. By the previous proposition, there exists a unique $G$-equivariant map $f:X\to Y$ such that $f(x)=y$. There also exists a unique $G$-equivariant map $h:Y\to X$ such that $h(y)=x$. Since for any $g\in G$, we have
\[
h\circ f(g\cdot x)=h(g \cdot y)=g \cdot h(y)=g\cdot x,\quad f\circ h(g\cdot y)=f(g\cdot x)=g\cdot f(x)=g\cdot y,
\]
we know $h\circ f=\mathrm{id}_X$ and $f\circ h=\mathrm{id}_Y$. Thus $f$ is a $G$-set isomorphism.
\item Suppose $X\cong Y$ as $G$-sets. Then there exists a $G$-set isomorphism $f:X\xrightarrow{\sim} Y$. We can assume $f(x)=g\cdot y$ for some $g\in G$. By the previous proposition, we have
\[
\mathrm{Stab}_G(x)=\mathrm{Stab}_G(f(x))=\mathrm{Stab}_G(g\cdot y)=g\mathrm{Stab}_G(y)g^{-1}.
\]
Conversely, suppose $\mathrm{Stab}_G(x)$ and $\mathrm{Stab}_G(y)$ are conjugate subgroups in $G$. Then there exists $g\in G$ such that
\[
\mathrm{Stab}_G(x)=g\mathrm{Stab}_G(y)g^{-1}=\mathrm{Stab}_G(g\cdot y).
\]
By the previous proposition, we have a $G$-set isomorphism $f:X\xrightarrow{\sim} Y$ such that $f(x)=g\cdot y$. Thus $X\cong Y$ as $G$-sets.
\end{enumerate}
\end{prf}
\begin{example}{The Orbit Decomposition of Subgroup Action}{}
Let $G$ be a group acting on a set $X$ with orbit decomposition
\[
X=\bigsqcup_{i \in I} G x_i
\]
Suppose $H$ be a subgroup of $G$ and $G$ has right coset decomposition
\[
G=\bigsqcup_{j \in J} Hg_j
\]
Then $H$ also acts on $X$ and each $G$-orbit is disjoint union of some $H$-orbits, which can written as
\[
Gx_i =\bigsqcup_{k \in K} H s_{ik}.
\]
More concretely, $Gx_i$ is the union of the cosets $H (g_jx_i)\;(j \in J)$,
\[
Gx_i =\bigcup_{j \in J} H g_j x_i.
\]
But $H (g_{j}x_i)$ may coincide with $H (g_{j'}x_i)$ for $j\ne j'$. We can duplicate $H (g_jx_i)\;(j \in J)$ by checking if there exists $h \in H$ such that $h g_j s_i=g_{j'} s_i$. Suppose $a \sim_H b$ iff $a$ and $b$ in the same $H$-orbit. Then we get
\[
\{s_{ik}\mid k \in K\}=\{g_j x_i \mid j \in J\}/\sim_H.
\]
\end{example}
\begin{definition}{Regular Group Action}{}
Let $G$ be a group acting on a set $X$. The action is called \textbf{regular} if any of the following equivalent conditions holds
\begin{enumerate}[(i)]
\item The action is transitive and free.
\item For any $x,y\in X$, there exists unique $g\in G$ such that $g\cdot x=y$.
\end{enumerate}
If $G$ acts regularly on $X$, then $X$ is called a \textbf{principal homogeneous space for $G$} or a $G$-\textbf{torsor}.
\end{definition}
\subsection{Coset}
\begin{example}{Left Multiplication Action}{}
Let $G$ be a group. The \textbf{left multiplication action} of $G$ on itself is defined as
\begin{align*}
m^L:G & \longrightarrow \mathrm{Aut}(G) \\
g & \longmapsto ( x\longmapsto gx)
\end{align*}
\end{example}
\begin{example}{Right Multiplication Action}{}
Let $G$ be a group. The \textbf{right multiplication action} of $G$ on itself is defined as
\begin{align*}
m^R:G^\circ & \longrightarrow \mathrm{Aut}(G) \\
g & \longmapsto ( x\longmapsto xg)
\end{align*}
\end{example}
\begin{definition}{Left Cosets}{}
Let $G$ be a group and $H$ be a subgroup of $G$. $H^\circ$ can act on $G$ through $H^\circ\hookrightarrow G^\circ\stackrel{m^R}{\longrightarrow} \mathrm{Aut}(G)$, namely
\begin{align*}
H^\circ & \longrightarrow \mathrm{Aut}(G) \\
h & \longmapsto (g\longmapsto gh)
\end{align*}
The orbit of $g$ under $H^\circ$ is called the \textbf{left coset} of $H$ containing $g$, denoted by $gH$
\[
gH = H^\circ g = \{ gh\mid h\in H\}.
\]
The set of all left cosets of $H$ is denoted by $G/H$, called the left coset space of $G$ modulo $H$. $G/H$ is the orbit space of $G$ under the right multiplication action of $H$.
\end{definition}
\begin{example}{$G$ Acts on $G/H$ Transitively}{G_act_on_coset_space_transitively}
Let $G$ be a group and $H$ be a subgroup of $G$. $G$ acts on $G/H$ through
\begin{align*}
G & \longrightarrow \mathrm{Aut}(G/H) \\
g & \longmapsto (xH\longmapsto gxH)
\end{align*}
For any $xH,yH\in G/H$, we have $yH=gxH$ for some $g=yx^{-1}\in G$. Thus $G$ acts on $G/H$ transitively. The stabilizer subgroup of $xH$ is given by
\[
\mathrm{Stab}_G(xH)=xHx^{-1}.
\]
\end{example}
\begin{definition}{Right Cosets}{}
Let $G$ be a group and $H$ be a subgroup of $G$. $H$ can act on $G$ through $H\hookrightarrow G\stackrel{m^L}{\longrightarrow} \mathrm{Aut}(G)$, namely
\begin{align*}
H & \longrightarrow \mathrm{Aut}(G) \\
h & \longmapsto (g\longmapsto hg)
\end{align*}
The orbit of $g$ under $H$ is called the \textbf{right coset} of $H$ containing $g$, denoted by $Hg$
\[
Hg = \{ hg\mid h\in H\},
\]
which matches notation of orbit. The set of all right cosets of $H$ is denoted by $H\backslash G$, called the right coset space of $G$ modulo $H$.
\end{definition}
\begin{definition}{Index of Subgroup}{}
Let $G$ be a group and $H$ be a subgroup of $G$. The \textbf{index} of $H$ in $G$ is defined as the cardinality of $G/H$ or $H\backslash G$, denoted by $[G:H]$.
\end{definition}
\begin{theorem}{Lagrange's Theorem}{}
Let $G$ be a finite group and $H$ be a subgroup of $G$. Then $|G|=|H|[G:H]$.
\end{theorem}
\begin{proposition}{$G$-Set Isomorphism $G/\mathrm{Stab}_G(x)\cong Gx$}{iso_stab_orbit}
Let $G$ be a group acting on a set $X$ and $x\in X$. Then the map
\begin{align*}
F:G/\mathrm{Stab}_G(x) & \longrightarrow Gx \\
g\hspace{1pt}\mathrm{Stab}_G(x) & \longmapsto g\cdot x
\end{align*}
is a $G$-set isomorphism. The transitive $G$-set $G/\mathrm{Stab}_G(x)$ is defined in \Cref{ex:G_act_on_coset_space_transitively}.
\end{proposition}
\begin{prf}
The map is well-defined since for any $h\in \mathrm{Stab}_G(x)$, we have $(gh)\cdot x=g\cdot (h\cdot x)=g\cdot x$. The map is a $G$-set homomorphism since for any $g_1,g_2\in G$,
\begin{align*}
F\left(g_1\cdot g_2\mathrm{Stab}_G(x)\right)=(g_1g_2)\cdot x=g_1\cdot(g_2\cdot x)=g_1\cdot F\left(g_2\mathrm{Stab}_G(x)\right).
\end{align*}
The map is injective since for any $g,h\in G$, if $g\cdot x=h\cdot x$, then $h^{-1}g\in \mathrm{Stab}_G(x)$. Hence $g\mathrm{Stab}_G(x)=h\mathrm{Stab}_G(x)$. The map is surjective because for any $g\cdot x\in Gx$, we have $F\left(g\hspace{1pt}\mathrm{Stab}_G(x)\right)=g\cdot x$.
\end{prf}
\begin{theorem}{Orbit-Stabilizer Theorem}{}
Let $G$ be a group acting on a set $X$. For $x\in X$, we have
\[
|G|=|Gx|\cdot |\mathrm{Stab}_G(x)| .
\]
\end{theorem}
\begin{prf}
According to \Cref{th:iso_stab_orbit}, we have
\[
\left|Gx\right|=\left|G/\mathrm{Stab}_G(x)\right|=|G|/\left|\mathrm{Stab}_G(x)\right|.
\]
\end{prf}
\begin{theorem}{Burnside's Lemma}{Burnside's_lemma}
Let $G$ be a finite group acting on a finite set $X$. Then the number of orbits of $G$ on $X$ is equal to
\[
|G\backslash X|=\frac{1}{|G|}\sum_{g\in G}|X^g| ,
\]
where $X^g=\{x\in X\mid g\cdot x=x\}$ is the set of fixed points of $g$.
\end{theorem}
\begin{prf}
\begin{align*}
\sum_{g \in G}\left|X^g\right| & =|\{(g, x) \in G \times X \mid g \cdot x=x\}| \\
& =\sum_{x \in X}\left|\mathrm{Stab}_G(x)\right| \\
& =\sum_{x \in X}\frac{|G|}{\left|G x\right|} \quad \text{by Orbit-Stabilizer Theorem} \\
& =|G| \sum_{G y \in G \backslash X}\; \sum_{x \in Gy}\frac{1}{\left|G x\right|} \\
& =|G| \sum_{G y \in G \backslash X} \left|Gy\right|\frac{1}{\left|G y\right|} \\
& =|G| \sum_{G y \in G \backslash X} 1 \\
& =|G| \cdot|G \backslash X|.
\end{align*}
\end{prf}
\subsection{Conjugacy Action}
\begin{definition}{Conjugacy Action and Inner Automorphism Group}{conjugacy_action}
Let $G$ be a group. The \textbf{conjugacy action} of $G$ on itself is defined as a group homomorphism
\begin{align*}
\gamma:G & \longrightarrow \mathrm{Aut}_{\mathsf{Grp}}(G) \\
g & \longmapsto (\gamma_g: x\longmapsto gxg^{-1})
\end{align*}
The \textbf{inner automorphism group} of $G$ is defined as the image of $\gamma$
$$
\mathrm{Inn}(G)=\operatorname{im}\gamma=\{ \gamma_g\mid g\in G\}.
$$
And we have inclusion relation $\mathrm{Inn}(G)\hookrightarrow\mathrm{Aut}_{\mathsf{Grp}}(G)\hookrightarrow\mathrm{Aut}_{\mathsf{Set}}(G)$.
\end{definition}
\begin{definition}{Conjugate Subgroups}{}
From \Cref{ex:acting_on_power_set}, we see conjugacy action on $G$ induces an action on its power set $2^G$: \begin{align*}
G\times 2^G & \longrightarrow 2^G \\
(g,E) & \longmapsto gEg^{-1}
\end{align*}
If $H$ is a subgroup of $G$, then $gHg^{-1}$ is also a subgroup of $G$. We say $H$ and $gHg^{-1}$ are \textbf{conjugate subgroups} of $G$.
\end{definition}
\begin{proposition}{Equivalent
Characterization of Inner Automorphisms}{}
Let $G$ be a group and $\varphi \in \mathrm{Aut}(G)$. Then $\varphi \in \mathrm{Inn}(G)$ if and only if $\varphi$ satisfies the property:
\[
\text{$G$ is embedded in a group $H$} \implies \text{$\varphi$ extends to an automorphism of $H$}.
\]
To be specific, the property can be stated as: for any monomophism $\iota:G\hookrightarrow H$,
there exists $\psi\in \mathrm{Aut}(H)$ such that the following diagram commutes
\[
\begin{tikzcd}[ampersand replacement=\&]
G \arrow[r, hook, "\iota"] \arrow[d, "\varphi"'] \& H \arrow[d, "\psi"] \\
G \arrow[r, hook, "\iota"'] \& H
\end{tikzcd}
\]
\end{proposition}
\begin{definition}{Outer Automorphism Group}{}
Let $G$ be a group. Then we have $\mathrm{Inn}(G) \lhd \mathrm{Aut}_{\mathsf{Grp}}(G)$. And the \textbf{outer automorphism group} of $G$ is defined as
$$
\mathrm{Out}(G)=\mathrm{coker}\,\gamma=\mathrm{Aut}_{\mathsf{Grp}}(G)/\mathrm{Inn}(G).
$$
\end{definition}
\begin{definition}{Characteristic Subgroup}{}
Let $G$ be a group. A subgroup $H\le G$ is called a \textbf{characteristic subgroup} if
\[
\forall \varphi \in\mathrm{Aut}_{\mathsf{Grp}}(G),\; \varphi(H)\subseteq H.
\]
It would be equivalent to require the stronger condition that $\forall \varphi \in\mathrm{Aut}_{\mathsf{Grp}}(G)$, $\varphi(H)= H$, because
\[
\varphi(H)\subseteq H\implies \varphi^{-1}(H)\subseteq H\implies H\subseteq \varphi(H).
\]
\end{definition}
\begin{definition}{Fully Characteristic Subgroup}{}
Let $G$ be a group. A subgroup $H\le G$ is called a \textbf{fully characteristic subgroup} if
\[
\forall \varphi \in\mathrm{End}_{\mathsf{Grp}}(G),\; \varphi(H)\subseteq H.
\]
\end{definition}
\begin{definition}{Word Map}{}
Suppose $G$ is a group and
$$
x=x_{i_1}^{\alpha_{1}}\cdots x_{i_m}^{\alpha_{m}}\in F\langle x_1,\cdots,x_n\rangle
$$
is a reduced word in a free group of rank $n$, where $\alpha_k\in\mathbb{Z}-\{0\}$ for $k=1,2,\cdots,m$. The \textbf{word map} induced by $x$ is defined as a map
\begin{align*}
w_x:G^m & \longrightarrow G \\
(g_1,\cdots,g_m) & \longmapsto g_{i_1}^{\alpha_1}\cdots g_{i_m}^{\alpha_m}.
\end{align*}
\end{definition}
\begin{definition}{Verbal Subgroup}{}
Let $G$ be a group and $\mathcal{W}$ be a collection of word maps. A subgroup $H\le G$ is called a \textbf{verbal subgroup} if $H$ is the subgroup generated by
$$
\left\{ w(g_1,\cdots,g_n)\mid w\in\mathcal{W},\; g_i\in G \right\}.
$$
\end{definition}
\begin{definition}{Commutator}{}
Let $G$ be a group. The word map induced by $xyx^{-1}y^{-1}$ is a binary operation defined on $G$, denoted by
\begin{align*}
[\cdot,\cdot]:G\times G & \longrightarrow G \\
(x,y) & \longmapsto [x,y]=xyx^{-1}y^{-1}
\end{align*}
$[x,y]$ is called the \textbf{commutator} of $x$ and $y$.
\end{definition}
\begin{proposition}{Properties of Commutator}{}
Let $G$ be a group. Then
\begin{enumerate}[(i)]
\item $x$ commutes with $y$ if and only if $[x,y]=1_G$.
\item $[x,y]^{-1}=[y,x]$.
\item For any homomorphism $f:G\to H$, $f([x,y])=[f(x),f(y)]$.
\end{enumerate}
\end{proposition}
\begin{proposition}{}{}
According to the extent that a subgroup is preserved by endomorphisms, we have the following inclusions
\[
\left\{\text{verbal subgroups}\right\}\subseteq \left\{\text{fully characteristic subgroups}\right\}\subseteq \left\{\text{characteristic subgroups}\right\}\subseteq\left\{\text{normal subgroups}\right\}.
\]
\end{proposition}
\begin{definition}{Commutator Subgroup}{}
Let $G$ be a group. The \textbf{commutator subgroup} or \textbf{derived subgroup} of $G$ is the subgroup generated by all the commutators, denoted by
$$
[G,G]=\langle \left\{[x,y]\mid x,y\in G \right\}\rangle.
$$
\end{definition}
\begin{proposition}{Properties of Commutator Subgroup}{}
Let $G$ be a group. Then
\begin{enumerate}[(i)]
\item $[G,G]$ is a verbal subgroup with $\mathcal{W}=\left\{ [\cdot,\cdot] \right\}$. Hence $[G,G]\lhd G$.
\item $[G,G]$ is the smallest normal subgroup of $G$ such that $G/[G,G]$ is abelian.
\item $[G,G]=\{1_G\}$ if and only if $G$ is abelian.
\end{enumerate}
\end{proposition}
\begin{definition}{Abelianization}{}
Let $G$ be a group. The \textbf{abelianization} of $G$ is defined as the quotient group
$$
G^{\mathrm{ab}}=G/[G,G].
$$
\end{definition}
\begin{proposition}{Universal Property of Abelianization}{}
Let $G$ be a group and $A$ be an abelian group. Then any group homomorphism $f:G\to A$ factors through $G^{\mathrm{ab}}$ uniquely, that is, there exists a unique homomorphism $\bar{f}:G^{\mathrm{ab}}\to A$ such that the following diagram commutes
$$
\begin{tikzcd}[ampersand replacement=\&]
G \arrow[rr, "f"] \arrow[rd] \& \& A \\
\& G^{\mathrm{ab}} \arrow[ru, "\bar{f}"'] \&
\end{tikzcd}
$$
\end{proposition}
\begin{definition}{Normalizer}{}
Let $G$ be a group and $S$ be a subset of $G$. The \textbf{normalizer} of $S$ in $G$ is defined as
$$
\mathrm{N}_G(S)=\left\{ g\in G\mid gSg^{-1}=S \right\}.
$$
Let $G$ acts on $2^G$ by conjugation (c.f. \Cref{th:conjugacy_action}). Then $\mathrm{N}_G(S)=\mathrm{Stab}_G(S)\le G$.
\end{definition}
\begin{proposition}{Normalizer of a Subgroup is the Largest Subgroup in which the Subgroup is Normal}{}
Let $G$ be a group and $H$ be a subgroup of $G$. Then $H\lhd\mathrm{N}_G(H)$. Moreover, $\mathrm{N}_G(H)$ is the largest subgroup of $G$ in which $H$ is normal, i.e. $$H\lhd K\le G\implies H\lhd K\le \mathrm{N}_G(H)\le G.$$
\end{proposition}
\begin{prf}
For all $n\in \mathrm{N}_G(H)$, we have $nHn^{-1}=H$, which implies $H \lhd \mathrm{N}_G(H)$. Suppose $H\lhd K\le G$. Then $\forall k\in K$, $kHk^{-1}=H$. Hence $k\in \mathrm{N}_G(H)$. Therefore we prove the maximality of $\mathrm{N}_G(H)$.
\end{prf}
\begin{definition}{Centralizer}{}
Let $G$ be a group and $S$ be a subset of $G$. The \textbf{centralizer} of $S$ in $G$ is defined as
\[
\mathrm{C}_G(S)=\left\{g\in G\mid \forall s\in S,\;gs=sg\right\}.
\]
The centralizer of $\{x\}$ is the stabilizer subgroup of $x$ under conjugacy action, denoted by
\[
\mathrm{C}_G(x)=\{ g\in G\mid gx=xg \}=\{ g\in G\mid gxg^{-1}=x \}= \mathrm{Stab}_G(x)=\mathrm{N}_G(x).
\]
\end{definition}
\begin{definition}{Center of a Group}{}
Let $G$ be a group. The \textbf{center} of $G$ is defined as the centralizer of $G$ in $G$, denoted by
\[
Z_G=\mathrm{C}_G(G)=\{ g\in G\mid \forall x\in G,\; gx=xg\}.
\]
\end{definition}
\begin{proposition}{Normalizer $\mathrm{N}_G(S)$ Acts on $S$ by Conjugation}{normalizer_conjugation_action}
Let $G$ be a group and $S\subseteq G$. Then $\mathrm{N}_G(S)$ acts on $S$ by conjugation, i.e. by the group homomorphism
\begin{align*}
\Psi_S: \mathrm{N}_G(S) & \longrightarrow \mathrm{Aut}_{\mathsf{Set}}(S) \\
g & \longmapsto \gamma_g|_S
\end{align*}
where $\gamma_g|_S(s)=gsg^{-1}$ for all $s\in S$. Moreover, we have $\ker\Psi_S=\mathrm{C}_G(S)\lhd \mathrm{N}_G(S)$.
\end{proposition}
\proof{
$\Psi_S$ is obtained from restriction $\Psi_S:\mathrm{N}_G(S)\hookrightarrow G\xrightarrow{\gamma}\mathrm{Aut}_{\mathsf{Set}}(G)$. Since for any $g\in \mathrm{N}_G(S)$, $\gamma_g|_S(S)=\left\{gsg^{-1}\in G\mid s \in S\right\}\subseteq S$, we see $\Psi_S(g)=\gamma_g|_S\in \mathrm{Aut}_{\mathsf{Set}}(S)$. The kernel of $\Psi_S$ is
\begin{align*}
\ker\Psi_S & = \left\{ n\in \mathrm{N}_G(S)\mid \gamma_n|_S=\mathrm{id}_S \right\}= \left\{ n\in \mathrm{N}_G(S)\mid \forall s\in S, nsn^{-1}=s \right\}=\mathrm{N}_G(S)\cap \mathrm{C}_G(S) = \mathrm{C}_G(S).
\end{align*}
}
\begin{theorem}{N/C Theorem}{N/C_theorem}
Let $G$ be a group and $H$ be a subgroup of $G$. By \Cref{th:normalizer_conjugation_action}, $\mathrm{N}_G(H)$ acts on $H$ by conjugation through the group homomorphism $\Psi_H:\mathrm{N}_G(H)\to \mathrm{Aut}_{\mathsf{Set}}(H)$. We assert that
\[