We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have the following data table: columns = { "meas_point_key": {"cf": "rowkey", "col": "key1", "type": "string", "length":"8"}, "date_key": {"cf": "rowkey", "col": "key2", "type": "string", "length":"14"}, "magnitude_key": {"cf": "rowkey", "col": "key3", "type": "string", "length":"2"}, "meas_int_key": {"cf": "rowkey", "col": "key4", "type": "string", "length":"1"}, "source_key": {"cf": "rowkey", "col": "key5", "type": "string"}, "date": {"cf": "IV", "col": "D", "type": "bigint"}, "file": {"cf": "IV", "col": "F", "type": "string"}, "last_update_date": {"cf": "IV", "col": "L", "type": "bigint"}, "magnitude": {"cf": "IV", "col": "M", "type": "bigint"}, "meas_int": {"cf": "IV", "col": "MI", "type": "bigint"}, "meas_point": {"cf": "IV", "col": "MP", "type": "bigint"}, "source": {"cf": "IV", "col": "S", "type": "bigint"}, "value": {"cf": "IV", "col": "V", "type": "double"}, "last_update_val": {"cf": "IV", "col": "LAV", "type": "bigint"}, "val_det": {"cf": "IV", "col": "VD", "type": "string"}, "val_res": {"cf": "IV", "col": "VR", "type": "string"} }
and i want to scan based on the rowkey with the following filters:
df = df1.where((df1.meas_point_key.isin(meter_list_B.value) ) & (df1.magnitude_key == "13") & (df1.date_key >= '01588302000000') & (df1.date_key <= '01593572400000') & (df1.meas_int_key == '1'))
where meter_list_B is a broadcasted list of string values, this list contains about 15000 values.
Is this query optimal? because i think that because of the time it is taking it is not an optimal scan.
Are MultiRowRangeFilters used in shc?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I have the following data table:
columns = {
"meas_point_key": {"cf": "rowkey", "col": "key1", "type": "string", "length":"8"},
"date_key": {"cf": "rowkey", "col": "key2", "type": "string", "length":"14"},
"magnitude_key": {"cf": "rowkey", "col": "key3", "type": "string", "length":"2"},
"meas_int_key": {"cf": "rowkey", "col": "key4", "type": "string", "length":"1"},
"source_key": {"cf": "rowkey", "col": "key5", "type": "string"},
"date": {"cf": "IV", "col": "D", "type": "bigint"},
"file": {"cf": "IV", "col": "F", "type": "string"},
"last_update_date": {"cf": "IV", "col": "L", "type": "bigint"},
"magnitude": {"cf": "IV", "col": "M", "type": "bigint"},
"meas_int": {"cf": "IV", "col": "MI", "type": "bigint"},
"meas_point": {"cf": "IV", "col": "MP", "type": "bigint"},
"source": {"cf": "IV", "col": "S", "type": "bigint"},
"value": {"cf": "IV", "col": "V", "type": "double"},
"last_update_val": {"cf": "IV", "col": "LAV", "type": "bigint"},
"val_det": {"cf": "IV", "col": "VD", "type": "string"},
"val_res": {"cf": "IV", "col": "VR", "type": "string"}
}
and i want to scan based on the rowkey with the following filters:
df = df1.where((df1.meas_point_key.isin(meter_list_B.value) ) & (df1.magnitude_key == "13") & (df1.date_key >= '01588302000000') & (df1.date_key <= '01593572400000') & (df1.meas_int_key == '1'))
where meter_list_B is a broadcasted list of string values, this list contains about 15000 values.
Is this query optimal? because i think that because of the time it is taking it is not an optimal scan.
Are MultiRowRangeFilters used in shc?
The text was updated successfully, but these errors were encountered: