-
Notifications
You must be signed in to change notification settings - Fork 75
/
prepro.py
355 lines (295 loc) · 13.2 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import random
from tqdm import tqdm
import spacy
import ujson as json
from collections import Counter
import numpy as np
import os.path
import argparse
import torch
# import pickle
import torch
import os
from joblib import Parallel, delayed
import torch
nlp = spacy.blank("en")
import bisect
import re
def find_nearest(a, target, test_func=lambda x: True):
idx = bisect.bisect_left(a, target)
if (0 <= idx < len(a)) and a[idx] == target:
return target, 0
elif idx == 0:
return a[0], abs(a[0] - target)
elif idx == len(a):
return a[-1], abs(a[-1] - target)
else:
d1 = abs(a[idx] - target) if test_func(a[idx]) else 1e200
d2 = abs(a[idx-1] - target) if test_func(a[idx-1]) else 1e200
if d1 > d2:
return a[idx-1], d2
else:
return a[idx], d1
def fix_span(para, offsets, span):
span = span.strip()
parastr = "".join(para)
assert span in parastr, '{}\t{}'.format(span, parastr)
begins, ends = map(list, zip(*[y for x in offsets for y in x]))
best_dist = 1e200
best_indices = None
if span == parastr:
return parastr, (0, len(parastr)), 0
for m in re.finditer(re.escape(span), parastr):
begin_offset, end_offset = m.span()
fixed_begin, d1 = find_nearest(begins, begin_offset, lambda x: x < end_offset)
fixed_end, d2 = find_nearest(ends, end_offset, lambda x: x > begin_offset)
if d1 + d2 < best_dist:
best_dist = d1 + d2
best_indices = (fixed_begin, fixed_end)
if best_dist == 0:
break
assert best_indices is not None
return parastr[best_indices[0]:best_indices[1]], best_indices, best_dist
def word_tokenize(sent):
doc = nlp(sent)
return [token.text for token in doc]
def convert_idx(text, tokens):
current = 0
spans = []
for token in tokens:
pre = current
current = text.find(token, current)
if current < 0:
raise Exception()
spans.append((current, current + len(token)))
current += len(token)
return spans
def prepro_sent(sent):
return sent
# return sent.replace("''", '" ').replace("``", '" ')
def _process_article(article, config):
paragraphs = article['context']
# some articles in the fullwiki dev/test sets have zero paragraphs
if len(paragraphs) == 0:
paragraphs = [['some random title', 'some random stuff']]
text_context, context_tokens, context_chars = '', [], []
offsets = []
flat_offsets = []
start_end_facts = [] # (start_token_id, end_token_id, is_sup_fact=True/False)
sent2title_ids = []
def _process(sent, is_sup_fact, is_title=False):
nonlocal text_context, context_tokens, context_chars, offsets, start_end_facts, flat_offsets
N_chars = len(text_context)
sent = sent
sent_tokens = word_tokenize(sent)
if is_title:
sent = '<t> {} </t>'.format(sent)
sent_tokens = ['<t>'] + sent_tokens + ['</t>']
sent_chars = [list(token) for token in sent_tokens]
sent_spans = convert_idx(sent, sent_tokens)
sent_spans = [[N_chars+e[0], N_chars+e[1]] for e in sent_spans]
N_tokens, my_N_tokens = len(context_tokens), len(sent_tokens)
text_context += sent
context_tokens.extend(sent_tokens)
context_chars.extend(sent_chars)
start_end_facts.append((N_tokens, N_tokens+my_N_tokens, is_sup_fact))
offsets.append(sent_spans)
flat_offsets.extend(sent_spans)
if 'supporting_facts' in article:
sp_set = set(list(map(tuple, article['supporting_facts'])))
else:
sp_set = set()
sp_fact_cnt = 0
for para in paragraphs:
cur_title, cur_para = para[0], para[1]
_process(prepro_sent(cur_title), False, is_title=True)
sent2title_ids.append((cur_title, -1))
for sent_id, sent in enumerate(cur_para):
is_sup_fact = (cur_title, sent_id) in sp_set
if is_sup_fact:
sp_fact_cnt += 1
_process(prepro_sent(sent), is_sup_fact)
sent2title_ids.append((cur_title, sent_id))
if 'answer' in article:
answer = article['answer'].strip()
if answer.lower() == 'yes':
best_indices = [-1, -1]
elif answer.lower() == 'no':
best_indices = [-2, -2]
else:
if article['answer'].strip() not in ''.join(text_context):
# in the fullwiki setting, the answer might not have been retrieved
# use (0, 1) so that we can proceed
best_indices = (0, 1)
else:
_, best_indices, _ = fix_span(text_context, offsets, article['answer'])
answer_span = []
for idx, span in enumerate(flat_offsets):
if not (best_indices[1] <= span[0] or best_indices[0] >= span[1]):
answer_span.append(idx)
best_indices = (answer_span[0], answer_span[-1])
else:
# some random stuff
answer = 'random'
best_indices = (0, 1)
ques_tokens = word_tokenize(prepro_sent(article['question']))
ques_chars = [list(token) for token in ques_tokens]
example = {'context_tokens': context_tokens,'context_chars': context_chars, 'ques_tokens': ques_tokens, 'ques_chars': ques_chars, 'y1s': [best_indices[0]], 'y2s': [best_indices[1]], 'id': article['_id'], 'start_end_facts': start_end_facts}
eval_example = {'context': text_context, 'spans': flat_offsets, 'answer': [answer], 'id': article['_id'],
'sent2title_ids': sent2title_ids}
return example, eval_example
def process_file(filename, config, word_counter=None, char_counter=None):
data = json.load(open(filename, 'r'))
examples = []
eval_examples = {}
outputs = Parallel(n_jobs=12, verbose=10)(delayed(_process_article)(article, config) for article in data)
# outputs = [_process_article(article, config) for article in data]
examples = [e[0] for e in outputs]
for _, e in outputs:
if e is not None:
eval_examples[e['id']] = e
# only count during training
if word_counter is not None and char_counter is not None:
for example in examples:
for token in example['ques_tokens'] + example['context_tokens']:
word_counter[token] += 1
for char in token:
char_counter[char] += 1
random.shuffle(examples)
print("{} questions in total".format(len(examples)))
return examples, eval_examples
def get_embedding(counter, data_type, limit=-1, emb_file=None, size=None, vec_size=None, token2idx_dict=None):
print("Generating {} embedding...".format(data_type))
embedding_dict = {}
filtered_elements = [k for k, v in counter.items() if v > limit]
if emb_file is not None:
assert size is not None
assert vec_size is not None
with open(emb_file, "r", encoding="utf-8") as fh:
for line in tqdm(fh, total=size):
array = line.split()
word = "".join(array[0:-vec_size])
vector = list(map(float, array[-vec_size:]))
if word in counter and counter[word] > limit:
embedding_dict[word] = vector
print("{} / {} tokens have corresponding {} embedding vector".format(
len(embedding_dict), len(filtered_elements), data_type))
else:
assert vec_size is not None
for token in filtered_elements:
embedding_dict[token] = [np.random.normal(
scale=0.01) for _ in range(vec_size)]
print("{} tokens have corresponding embedding vector".format(
len(filtered_elements)))
NULL = "--NULL--"
OOV = "--OOV--"
token2idx_dict = {token: idx for idx, token in enumerate(
embedding_dict.keys(), 2)} if token2idx_dict is None else token2idx_dict
token2idx_dict[NULL] = 0
token2idx_dict[OOV] = 1
embedding_dict[NULL] = [0. for _ in range(vec_size)]
embedding_dict[OOV] = [0. for _ in range(vec_size)]
idx2emb_dict = {idx: embedding_dict[token]
for token, idx in token2idx_dict.items()}
emb_mat = [idx2emb_dict[idx] for idx in range(len(idx2emb_dict))]
idx2token_dict = {idx: token for token, idx in token2idx_dict.items()}
return emb_mat, token2idx_dict, idx2token_dict
def build_features(config, examples, data_type, out_file, word2idx_dict, char2idx_dict):
if data_type == 'test':
para_limit, ques_limit = 0, 0
for example in tqdm(examples):
para_limit = max(para_limit, len(example['context_tokens']))
ques_limit = max(ques_limit, len(example['ques_tokens']))
else:
para_limit = config.para_limit
ques_limit = config.ques_limit
char_limit = config.char_limit
def filter_func(example):
return len(example["context_tokens"]) > para_limit or len(example["ques_tokens"]) > ques_limit
print("Processing {} examples...".format(data_type))
datapoints = []
total = 0
total_ = 0
for example in tqdm(examples):
total_ += 1
if filter_func(example):
continue
total += 1
context_idxs = np.zeros(para_limit, dtype=np.int64)
context_char_idxs = np.zeros((para_limit, char_limit), dtype=np.int64)
ques_idxs = np.zeros(ques_limit, dtype=np.int64)
ques_char_idxs = np.zeros((ques_limit, char_limit), dtype=np.int64)
def _get_word(word):
for each in (word, word.lower(), word.capitalize(), word.upper()):
if each in word2idx_dict:
return word2idx_dict[each]
return 1
def _get_char(char):
if char in char2idx_dict:
return char2idx_dict[char]
return 1
context_idxs[:len(example['context_tokens'])] = [_get_word(token) for token in example['context_tokens']]
ques_idxs[:len(example['ques_tokens'])] = [_get_word(token) for token in example['ques_tokens']]
for i, token in enumerate(example["context_chars"]):
l = min(len(token), char_limit)
context_char_idxs[i, :l] = [_get_char(char) for char in token[:l]]
for i, token in enumerate(example["ques_chars"]):
l = min(len(token), char_limit)
ques_char_idxs[i, :l] = [_get_char(char) for char in token[:l]]
start, end = example["y1s"][-1], example["y2s"][-1]
y1, y2 = start, end
datapoints.append({'context_idxs': torch.from_numpy(context_idxs),
'context_char_idxs': torch.from_numpy(context_char_idxs),
'ques_idxs': torch.from_numpy(ques_idxs),
'ques_char_idxs': torch.from_numpy(ques_char_idxs),
'y1': y1,
'y2': y2,
'id': example['id'],
'start_end_facts': example['start_end_facts']})
print("Build {} / {} instances of features in total".format(total, total_))
# pickle.dump(datapoints, open(out_file, 'wb'), protocol=-1)
torch.save(datapoints, out_file)
def save(filename, obj, message=None):
if message is not None:
print("Saving {}...".format(message))
with open(filename, "w") as fh:
json.dump(obj, fh)
def prepro(config):
random.seed(13)
if config.data_split == 'train':
word_counter, char_counter = Counter(), Counter()
examples, eval_examples = process_file(config.data_file, config, word_counter, char_counter)
else:
examples, eval_examples = process_file(config.data_file, config)
word2idx_dict = None
if os.path.isfile(config.word2idx_file):
with open(config.word2idx_file, "r") as fh:
word2idx_dict = json.load(fh)
else:
word_emb_mat, word2idx_dict, idx2word_dict = get_embedding(word_counter, "word", emb_file=config.glove_word_file,
size=config.glove_word_size, vec_size=config.glove_dim, token2idx_dict=word2idx_dict)
char2idx_dict = None
if os.path.isfile(config.char2idx_file):
with open(config.char2idx_file, "r") as fh:
char2idx_dict = json.load(fh)
else:
char_emb_mat, char2idx_dict, idx2char_dict = get_embedding(
char_counter, "char", emb_file=None, size=None, vec_size=config.char_dim, token2idx_dict=char2idx_dict)
if config.data_split == 'train':
record_file = config.train_record_file
eval_file = config.train_eval_file
elif config.data_split == 'dev':
record_file = config.dev_record_file
eval_file = config.dev_eval_file
elif config.data_split == 'test':
record_file = config.test_record_file
eval_file = config.test_eval_file
build_features(config, examples, config.data_split, record_file, word2idx_dict, char2idx_dict)
save(eval_file, eval_examples, message='{} eval'.format(config.data_split))
if not os.path.isfile(config.word2idx_file):
save(config.word_emb_file, word_emb_mat, message="word embedding")
save(config.char_emb_file, char_emb_mat, message="char embedding")
save(config.word2idx_file, word2idx_dict, message="word2idx")
save(config.char2idx_file, char2idx_dict, message="char2idx")
save(config.idx2word_file, idx2word_dict, message='idx2word')
save(config.idx2char_file, idx2char_dict, message='idx2char')