forked from kunyuan/FeynCalculator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge.py
37 lines (30 loc) · 1.15 KB
/
merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
rs=1.0
Lambda=1.0
Beta=25
############## 3D ##################################
kF=(9.0*np.pi/4.0)**(1.0/3.0)/rs #3D
###### Bare Green's function #########################
# Bubble=0.08871 # 3D, Beta=0.5, rs=1
# Bubble=0.0971916 #3D, Beta=10, rs=1
# Bubble=0.0971613 #3D, T=0.04Ef, rs=1
# Bubble= 0.097226 # 3D, zero temperature, rs=1
###### Fock dressed Green's function ###################
Bubble, Density, dMu2=0.088883, 0.2387, -0.2699 #3D, Beta=0.1, rs=1, Lambda=1.0
############## 2D ##################################
###### Bare Green's function #########################
# kF=np.sqrt(2.0)/rs #2D
# Bubble=0.11635 #2D, Beta=0.5, rs=1
# Bubble=0.15916 #2D, Beta=10, rs=1
folder="./Beta{0}_rs{1}_lambda{2}_freq/".format(Beta, rs, Lambda)
RawData=np.loadtxt(folder+"output.dat")
Order={}
OrderList=[1,2,3]
for order in OrderList:
Order[order]=RawData[RawData[:,0]==order]
Norm=Order[1][:,1]/Bubble
for order in OrderList:
Order[order][:,1]/=Norm
for order in OrderList:
print "Order {0}: {1}+-{2}".format(order, Order[order][:,1].mean(), Order[order][:,1].std()/np.sqrt(len(Order[order][:,1])))
print Order[order]