forked from kunyuan/FeynCalculator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolar_eqTime.py
executable file
·163 lines (134 loc) · 4.51 KB
/
polar_eqTime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mat
import sys
import glob, os, re
mat.rcParams.update({'font.size': 16})
mat.rcParams["font.family"] = "Times New Roman"
size=12
rs=1.0
Lambda=1.0
Beta=10
############## 3D ##################################
kF=(9.0*np.pi/4.0)**(1.0/3.0)/rs #3D
###### Bare Green's function #########################
# Bubble=0.08871 # 3D, Beta=0.5, rs=1
# Bubble=0.0971916 #3D, Beta=10, rs=1
# Bubble=0.0971613 #3D, T=0.04Ef, rs=1
# Bubble= 0.097226 # 3D, zero temperature, rs=1
###### Fock dressed Green's function ###################
Bubble, Density=0.088883,0.2387 #3D, Beta=0.1, rs=1
############## 2D ##################################
###### Bare Green's function #########################
# kF=np.sqrt(2.0)/rs #2D
# Bubble=0.11635 #2D, Beta=0.5, rs=1
# Bubble=0.15916 #2D, Beta=10, rs=1
ScanOrder=[1,2, 3]
# ScanOrder=[3]
Index={}
Index[1]=[1, ]
Index[2]=[1, ]
Index[3]=[1,2,3,4,5]
DataAll={}
Data={}
DataAtOrder={}
Normalization=1
folder="./Beta{0}_rs{1}_lambda{2}_eqTime/Data/".format(Beta, rs, Lambda)
# os.chdir(folder)
files=os.listdir(folder)
for order in ScanOrder:
Num=0
data0=None
for f in files:
if re.match("Diag"+str(order)+"_[0-9]+.dat", f):
print f
Num+=1
d=np.loadtxt(folder+f)
if data0 is None:
data0=d
else:
data0[:,1:]+=d[:,1:]
print "Found {0} files.".format(Num)
data0[:,1:]/=Num
DataAll[order]=np.array(data0)
Data[order]=[]
for i in Index[order]:
Num=0
data=None
for f in files:
if re.match("Diag"+str(order)+"_[0-9]+_"+str(i)+".dat", f):
print f
Num+=1
d=np.loadtxt(folder+f)
# print f, d[0,1]
if data is None:
data=d
else:
data[:,1:]+=d[:,1:]
print "Found {0} files.".format(Num)
data[:,1:]/=Num
Data[order].append(np.array(data))
Normalization=0.0
Num=0
for i in range(len(Data[1][0][:,0])):
# print Data[1][0][i,0]
if Data[1][0][i,0]>5.0*kF:
Normalization+=Data[1][0][i,1]
Num+=1
Normalization/=Num
Normalization/=Density
for key in DataAll.keys():
DataAll[key][:,1]/=Normalization
for i in range(len(Data[key])):
Data[key][i][:,1]/=Normalization
#Additional sign due to the order
DataAll[1][:,1]*=1.0
DataAll[2][:,1]*=-1.0
DataAll[3][:,1]*=1.0
DataAtOrder[1]=np.copy(DataAll[1])
DataAtOrder[2]=np.copy(DataAll[1])
DataAtOrder[2][:,1]+=DataAll[2][:,1]
DataAtOrder[3]=np.copy(DataAll[1])
DataAtOrder[3][:,1]+=DataAll[2][:,1]
DataAtOrder[3][:,1]+=DataAll[3][:,1]
def ErrorPlot(p, d, color, marker, label=None, size=4):
data=np.array(d)
data[:,0]/=kF
p.plot(data[:,0],data[:,1],marker=marker,c=color, label=label,lw=1, markeredgecolor="None", linestyle="--", markersize=size)
# p.errorbar(data[:,0],data[:,1], yerr=data[:,2], c=color, ecolor=color, capsize=0, linestyle="None")
# p.fill_between(data[:,0], data[:,1]-data[:,2], data[:,1]+data[:,2], alpha=0.5, facecolor=color, edgecolor=color)
w=1-0.429
fig, ax = plt.subplots()
# ax=fig.add_axes()
# ax = fig.add_subplot(122)
# plt.subplot(1,2,2)
ColorList=['k','r', 'b', 'g', 'm', 'c']
for i in range(0, len(ScanOrder)):
o=ScanOrder[i]
ErrorPlot(ax, DataAtOrder[o], ColorList[i], 's', "Order {0}".format(o))
# ErrorPlot(ax, DataAll[3], 'b', 'o', "Order 3")
# ErrorPlot(ax, Data[2][2], 'olive', 's', "Order 3, bubble counter 1")
# ErrorPlot(ax, Data[2][3], 'olive', 'o', "Order 3, bubble counter 2")
# ErrorPlot(ax, Data[1][1], 'm', 's', "Order 3, shift 1")
# ErrorPlot(ax, Data[1][2], 'm', 'o', "Order 3, shift 2")
# ErrorPlot(ax, Data[3][3], 'm', 's', "Diag 4")
# ErrorPlot(ax, Data[3][4], 'c', '*', "Diag 5")
# ErrorPlot(ax, Data[5], 'g', 's', "Diag 6")
x=np.arange(0,Data[1][0][-1,0]/kF,0.001)
y=x*0.0
ax.plot(x,y,'k-', lw=1)
ax.set_xlim([0.0, Data[1][0][-1,0]/kF])
# ax.set_xticks([0.0,0.04,0.08,0.12])
# ax.set_yticks([0.35,0.4,0.45,0.5])
# ax.set_ylim([0.0, 0.12])
ax.set_xlabel("$q/k_F$", size=size)
# ax.xaxis.set_label_coords(0.97, -0.01)
# # ax.yaxis.set_label_coords(0.97, -0.01)
# ax.text(-0.012,0.52, "$-I$", fontsize=size)
ax.set_ylabel("$-P(\omega=0, q)$", size=size)
# ax.text(0.02,0.47, "$\\sim {\\frac{1}{2}-}\\frac{1}{2} {\\left( \\frac{r}{L} \\right)} ^{2-s}$", fontsize=28)
plt.legend(loc=1, frameon=False, fontsize=size)
# plt.title("2D density integral")
plt.tight_layout()
# plt.savefig("spin.pdf")
plt.show()