-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathtest_physionet.py
124 lines (106 loc) · 4.33 KB
/
test_physionet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
test on physionet data
Shenda Hong, Nov 2019
"""
import numpy as np
from collections import Counter
from tqdm import tqdm
from matplotlib import pyplot as plt
from sklearn.metrics import classification_report, confusion_matrix
from util import read_data_physionet_2, read_data_physionet_4, preprocess_physionet
from resnet1d import ResNet1D, MyDataset
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from tensorboardX import SummaryWriter
from torchsummary import summary
if __name__ == "__main__":
is_debug = False
batch_size = 32
if is_debug:
writer = SummaryWriter('/nethome/shong375/log/resnet1d/challenge2017/debug')
else:
writer = SummaryWriter('/nethome/shong375/log/resnext1d/challenge2017/layer98')
# make data
# preprocess_physionet() ## run this if you have no preprocessed data yet
X_train, X_test, Y_train, Y_test, pid_test = read_data_physionet_4()
print(X_train.shape, Y_train.shape)
dataset = MyDataset(X_train, Y_train)
dataset_test = MyDataset(X_test, Y_test)
dataloader = DataLoader(dataset, batch_size=batch_size)
dataloader_test = DataLoader(dataset_test, batch_size=batch_size, drop_last=False)
# make model
device_str = "cuda"
device = torch.device(device_str if torch.cuda.is_available() else "cpu")
kernel_size = 16
stride = 2
n_block = 48
downsample_gap = 6
increasefilter_gap = 12
model = ResNet1D(
in_channels=1,
base_filters=128, # 64 for ResNet1D, 352 for ResNeXt1D
kernel_size=kernel_size,
stride=stride,
groups=32,
n_block=n_block,
n_classes=4,
downsample_gap=downsample_gap,
increasefilter_gap=increasefilter_gap,
use_do=True)
model.to(device)
summary(model, (X_train.shape[1], X_train.shape[2]), device=device_str)
# exit()
# train and test
model.verbose = False
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-3)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
loss_func = torch.nn.CrossEntropyLoss()
n_epoch = 50
step = 0
for _ in tqdm(range(n_epoch), desc="epoch", leave=False):
# train
model.train()
prog_iter = tqdm(dataloader, desc="Training", leave=False)
for batch_idx, batch in enumerate(prog_iter):
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
loss = loss_func(pred, input_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
step += 1
writer.add_scalar('Loss/train', loss.item(), step)
if is_debug:
break
scheduler.step(_)
# test
model.eval()
prog_iter_test = tqdm(dataloader_test, desc="Testing", leave=False)
all_pred_prob = []
with torch.no_grad():
for batch_idx, batch in enumerate(prog_iter_test):
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
all_pred_prob.append(pred.cpu().data.numpy())
all_pred_prob = np.concatenate(all_pred_prob)
all_pred = np.argmax(all_pred_prob, axis=1)
## vote most common
final_pred = []
final_gt = []
for i_pid in np.unique(pid_test):
tmp_pred = all_pred[pid_test==i_pid]
tmp_gt = Y_test[pid_test==i_pid]
final_pred.append(Counter(tmp_pred).most_common(1)[0][0])
final_gt.append(Counter(tmp_gt).most_common(1)[0][0])
## classification report
tmp_report = classification_report(final_gt, final_pred, output_dict=True)
print(confusion_matrix(final_gt, final_pred))
f1_score = (tmp_report['0']['f1-score'] + tmp_report['1']['f1-score'] + tmp_report['2']['f1-score'] + tmp_report['3']['f1-score'])/4
writer.add_scalar('F1/f1_score', f1_score, _)
writer.add_scalar('F1/label_0', tmp_report['0']['f1-score'], _)
writer.add_scalar('F1/label_1', tmp_report['1']['f1-score'], _)
writer.add_scalar('F1/label_2', tmp_report['2']['f1-score'], _)
writer.add_scalar('F1/label_3', tmp_report['3']['f1-score'], _)