-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathtest_physionet_crnn.py
110 lines (92 loc) · 3.74 KB
/
test_physionet_crnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
test on physionet data
Shenda Hong, Jan 2020
"""
import numpy as np
import pickle
from collections import Counter
from tqdm import tqdm
from matplotlib import pyplot as plt
from sklearn.metrics import classification_report, confusion_matrix
from util import read_data_physionet_2, read_data_physionet_2_clean, read_data_physionet_4, preprocess_physionet
from crnn1d import CRNN, MyDataset
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from tensorboardX import SummaryWriter
from torchsummaryX import summary
if __name__ == "__main__":
is_debug = False
batch_size = 128
if is_debug:
writer = SummaryWriter('/nethome/shong375/log/crnn1d/challenge2017/debug')
else:
writer = SummaryWriter('/nethome/shong375/log/crnn1d/challenge2017/new_novote_cleandata_rerunx')
# make data
# preprocess_physionet() ## run this if you have no preprocessed data yet
X_train, X_test, Y_train, Y_test, pid_test = read_data_physionet_2_clean(window_size=3000, stride=500)
print(X_train.shape, Y_train.shape)
dataset = MyDataset(X_train, Y_train)
dataset_test = MyDataset(X_test, Y_test)
dataloader = DataLoader(dataset, batch_size=batch_size)
dataloader_test = DataLoader(dataset_test, batch_size=batch_size, drop_last=False)
# make model
device_str = "cuda"
device = torch.device(device_str if torch.cuda.is_available() else "cpu")
model = CRNN(
in_channels=1,
out_channels=16,
n_len_seg=50,
verbose=False,
n_classes=2,
device=device)
summary(model, torch.zeros(1, 1, 3000))
model.to(device)
# train and test
model.verbose = False
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-3)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
loss_func = torch.nn.CrossEntropyLoss()
n_epoch = 200
step = 0
prev_f1 = 0
for _ in tqdm(range(n_epoch), desc="epoch", leave=False):
# train
model.train()
prog_iter = tqdm(dataloader, desc="Training", leave=False)
for batch_idx, batch in enumerate(prog_iter):
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
loss = loss_func(pred, input_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
step += 1
writer.add_scalar('Loss/train', loss.item(), step)
if is_debug:
break
scheduler.step(_)
# test
model.eval()
prog_iter_test = tqdm(dataloader_test, desc="Testing", leave=False)
all_pred_prob = []
with torch.no_grad():
for batch_idx, batch in enumerate(prog_iter_test):
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
all_pred_prob.append(pred.cpu().data.numpy())
all_pred_prob = np.concatenate(all_pred_prob)
all_pred = np.argmax(all_pred_prob, axis=1)
## classification report
tmp_report = classification_report(Y_test, all_pred, output_dict=True)
print(confusion_matrix(Y_test, all_pred))
f1_score = (tmp_report['0']['f1-score'] + tmp_report['1']['f1-score'])/2
if f1_score > prev_f1:
print(_, f1_score)
# torch.save(model, 'models/crnn/crnn_{}_{:.4f}.pt'.format(_, f1_score))
prev_f1 = f1_score
writer.add_scalar('F1/f1_score', f1_score, _)
writer.add_scalar('F1/label_0', tmp_report['0']['f1-score'], _)
writer.add_scalar('F1/label_1', tmp_report['1']['f1-score'], _)