-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
executable file
·181 lines (146 loc) · 4.99 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/bin/env python
from flask import Flask, request, render_template
import pandas as pd
from pf.types.models import Account, Record, init_db
from playhouse.flask_utils import FlaskDB
from pf.plugins.utils import log
from numpy import nan, polyfit
def create_app():
DATABASE = "pf.db"
app = Flask(__name__)
peewee_db = init_db(DATABASE)
FlaskDB(app, peewee_db)
return app
app = create_app()
def filter_description(df: pd.DataFrame, filters: str):
if len(filters) < 2:
return df
if filters[0] == "~":
return df[~df.description.str.contains(filters[1:], case=False)]
return df[df.description.str.contains(filters, case=False)]
@app.route("/")
def index():
accounts = list(Account.select(Account.bank_name, Account.account_number).dicts())
print(accounts)
return render_template("index.jinja", accounts=accounts)
@app.route("/accounts/")
def accounts():
return render_template("accounts.jinja")
@app.route("/transactions/")
def transactions():
account = request.args.get("account")
filters = request.args.get("filters", "")
res = list(
Record.select(
Record.date,
Record.description,
Record.txn_reference,
Record.credit,
Record.debit,
Record.balance,
)
.where(Record.fk_account_number ** f"%{account}%")
.dicts()
)
df = pd.DataFrame(data=res).fillna("")
df["date"] = pd.to_datetime(df["date"])
df = df.set_index("date").sort_values(by="date")
df = filter_description(df, filters)
return df.to_html()
@app.route("/api/accounts/")
def api_accounts():
# res = list(Account.select().dicts())
res = Account.get_accounts_and_statements()
# df = pd.DataFrame(data=res)
return res
def extrapolate_balance_for_loan(accounts, balance_df, samples=12):
if "loan" in accounts.lower() and len(balance_df) > samples:
# y = a*x^2 + b*x + c
coeff = polyfit(
balance_df.index[-samples:].map(lambda x: x.timestamp()),
balance_df["balance"][-samples:],
2,
)
log.debug(coeff)
def extrapolate(x):
return (coeff[0] * x * x) + (coeff[1] * x) + coeff[2]
ep_df = []
for date, _ in balance_df[-samples:].iterrows():
ep_df.append([date, extrapolate(date.timestamp())])
for i in range(5 * 12 + 2):
if ep_df[-1][1] >= 0:
break
next = ep_df[-1][0] + pd.DateOffset(months=1)
ep_df.append([next, extrapolate(next.timestamp())])
ep_df = pd.DataFrame(ep_df, columns=["date", "balance"]).set_index("date")
ep_df.index = ep_df.index.strftime("%Y-%m")
return ep_df
return None
@app.route("/api/transactions/")
def api_transactions():
account = request.args.get("account")
filters = request.args.get("filters", "")
accounts = ", ".join(
[
f"{acc.account_number} - {acc.description}"
for acc in Account.select().where(Account.account_number ** f"%{account}%")
]
)
res = list(
Record.select(
Record.date, Record.description, Record.credit, Record.debit, Record.balance
)
.where(Record.fk_account_number ** f"%{account}%")
.order_by(Record.date, Record.imported_order)
.dicts()
)
if len(res) == 0:
return "Not found", 404
df = pd.DataFrame(data=res)
df["date"] = pd.to_datetime(df["date"])
df = df.set_index("date")
df = filter_description(df, filters)
df = df.replace(to_replace=nan, value=None)
group = df.groupby(pd.Grouper(freq="ME"))
gdf = group[["credit", "debit"]].sum()
# gdf = gdf.replace(to_replace=nan, value=None)
gdf.index = gdf.index.strftime("%Y-%m")
balance_df = group[["balance"]].mean()
balance_df = balance_df.replace(to_replace=nan, value=None)
ep_df = extrapolate_balance_for_loan(accounts, balance_df)
balance_df.index = balance_df.index.strftime("%Y-%m")
table_df = df[["description", "credit", "debit"]]
table_df.index = table_df.index.strftime("%Y-%m")
table_df = table_df.reset_index()
ret = {
"accounts": accounts,
"datasets": [
{
"label": "credit",
"data": gdf["credit"].to_dict(),
},
{
"label": "debit",
"data": gdf["debit"].to_dict(),
},
],
"transactions": table_df.to_dict(orient="records"),
}
if len(balance_df) > 0:
ret["datasets"].append(
{
"label": "avg balance",
"data": balance_df["balance"].to_dict(),
}
)
if ep_df is not None and len(ep_df) > 0:
ret["datasets"].append(
{
"label": "balance trend",
"data": ep_df["balance"].to_dict(),
"borderDash": [1, 5],
}
)
return ret
if __name__ == "__main__":
app.run(port=3000, debug=True)