-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
232 lines (200 loc) · 7.78 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#TODO: Import your dependencies.
#For instance, below are some dependencies you might need if you are using Pytorch
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.models as models
import torchvision.transforms as transforms
import os
import argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True # using this setting to solve a problem with truncated images during training
import smdebug.pytorch as smd
def train(model, train_loader, valid_loader, epochs, loss_criterion, optimizer, device, hook):
'''
TODO: Complete this function that can take a model and
data loaders for training and will get train the model
Remember to include any debugging/profiling hooks that you might need
'''
for epoch in range(epochs):
for ds_version in ['train', 'valid']:
running_loss = 0
running_correct = 0
if ds_version == 'train':
model.train()
dataloader = train_loader
# setting hook to training mode
hook.set_mode(smd.modes.TRAIN)
else:
model.eval()
dataloader = valid_loader
# setting hook to training mode
hook.set_mode(smd.modes.EVAL)
for data, target in dataloader:
data, target = data.to(device), target.to(device)
outputs = model(data)
loss = loss_criterion(outputs, target)
_, preds = torch.max(outputs, 1)
running_loss += loss.item()
# acumulating number of correct predictions so we can
# compute accuracy by the end of epoch
with torch.no_grad():
running_correct += torch.sum(preds == target).item()
# perform optimization only with training set
if ds_version == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_correct / len(dataloader.dataset)
print(f'Epoch : {ds_version}-{epoch}, loss = {epoch_loss}, acc = {epoch_acc}')
def test(model, test_loader, loss_criterion, device, hook):
'''
TODO: Complete this function that can take a model and a
testing data loader and will get the test accuray/loss of the model
Remember to include any debugging/profiling hooks that you might need
'''
model.eval()
running_loss = 0
running_correct = 0
# setting hook for evaluation mode
hook.set_mode(smd.modes.EVAL)
for data, target in test_loader:
data, target = data.to(device), target.to(device)
outputs = model(data)
loss = loss_criterion(outputs, target)
_, preds = torch.max(outputs, 1)
running_loss += loss.item()
running_correct += torch.sum(preds == target.data).item()
total_loss = running_loss / len(test_loader.dataset)
total_acc = running_correct/ len(test_loader.dataset)
print(f"Test Accuracy: {100 * total_acc}, Test Loss: {total_loss}")
def net():
'''
TODO: Complete this function that initializes your model
Remember to use a pretrained model
'''
num_classes = 133
model = models.resnet101(pretrained=True)
# freeze pretrained model parameters, so we can perform transfer learning
for param in model.parameters():
param.requires_grad = False
# get the number of input features of the final layer of the original network
num_inputs = model.fc.in_features
# create a new output layer that will output the class probabilities
model.fc = nn.Linear(num_inputs, num_classes)
return model
def create_data_loaders(data, batch_size):
'''
Utility function that builds dataloaders for each dataset version
'''
dataloaders = {version: torch.utils.data.DataLoader(data[version], batch_size, shuffle=True) for version in ['train', 'valid', 'test']}
return dataloaders
def main(args):
print(f"Hyperparameters used: learning_rate={args.lr}\tbatch_size={args.batch_size}\tepochs={args.epochs}")
# creating sagemaker debugger hook
hook = smd.Hook.create_from_json_file()
'''
TODO: Initialize a model by calling the net function
'''
model=net()
# registering model
hook.register_hook(model)
'''
TODO: Create your loss and optimizer
'''
loss_criterion = nn.CrossEntropyLoss()
# register loss
hook.register_loss(loss_criterion)
optimizer = optim.Adam(model.fc.parameters(), args.lr)
# storing number of epochs in a variable
epochs = args.epochs
# importing training data
# defining data augumentation and transformations for each dataset version
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'valid': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
datasets = {version: torchvision.datasets.ImageFolder(os.path.join(args.data_dir, version), transform=data_transforms[version]) for version in ['train', 'valid', 'test']}
# creating data loaders
dataloaders = create_data_loaders(datasets , args.batch_size)
train_loader = dataloaders['train']
valid_loader = dataloaders['valid']
test_loader = dataloaders['test']
'''
TODO: Call the train function to start training your model
Remember that you will need to set up a way to get training data from S3
'''
# getting gpu info
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train(model, train_loader, valid_loader, epochs, loss_criterion, optimizer, device, hook)
'''
TODO: Test the model to see its accuracy
'''
test(model, test_loader, loss_criterion, device, hook)
'''
TODO: Save the trained model
'''
path = os.path.join(args.model_dir, 'model.pth')
torch.save(model, path)
if __name__=='__main__':
parser=argparse.ArgumentParser()
'''
TODO: Specify all the hyperparameters you need to use to train your model.
'''
# learning rate
parser.add_argument(
"--lr", type=float, default=0.001, metavar="LEARNING_RATE", help="learning rate. default: 0.001"
)
parser.add_argument(
"--epochs",
type=int,
default=5,
metavar="EPOCHS",
help="number of epochs. default: 5",
)
# batch_size
parser.add_argument(
"--batch-size",
type=int,
default=128,
metavar="BATCH_SIZE",
help="batch size. default: 128",
)
parser.add_argument(
"--model-dir",
type=str,
default=os.environ["SM_MODEL_DIR"]
)
parser.add_argument(
"--data-dir",
type=str,
default=os.environ["SM_CHANNEL_DATA"]
)
parser.add_argument(
'--output-dir',
type=str,
default=os.environ['SM_OUTPUT_DATA_DIR']
)
args=parser.parse_args()
main(args)