-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathTcut_for_bipartite_graph.m
41 lines (34 loc) · 1.04 KB
/
Tcut_for_bipartite_graph.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
function labels = Tcut_for_bipartite_graph(B,Nseg,maxKmIters,cntReps,distance)
% B - |X|-by-|Y|, cross-affinity-matrix
if nargin < 4
cntReps = 3;
end
if nargin < 3
maxKmIters = 100;
end
[Nx,Ny] = size(B);
if Ny < Nseg
% error('Need more columns!');
B(1,Nseg)=0;
Ny = Nseg;
end
dx = sum(B,2);
dx(dx==0) = 1e-10; % Just to make 1./dx feasible.
Dx = sparse(1:Nx,1:Nx,1./dx); clear dx
Wy = B'*Dx*B;
%%% compute Ncut eigenvectors
% normalized affinity matrix
d = sum(Wy,2);
d(d==0) = eps;
D = sparse(1:Ny,1:Ny,1./sqrt(d)); clear d
nWy = D*Wy*D; clear Wy
nWy = (nWy+nWy')/2;
% computer eigenvectors
[evec,eval] = eig(full(nWy)); clear nWy
[~,idx] = sort(diag(eval),'descend');
Ncut_evec = D*evec(:,idx(1:Nseg)); clear D
%%% compute the Ncut eigenvectors on the entire bipartite graph (transfer!)
evec = Dx * B * Ncut_evec; clear B Dx Ncut_evec
% normalize each row to unit norm
evec = bsxfun( @rdivide, evec, sqrt(sum(evec.*evec,2)) + 1e-10 );
labels = litekmeans(evec,Nseg,'MaxIter',maxKmIters,'Replicates',cntReps,'Distance','cosine');