-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathinference.py
141 lines (118 loc) · 4.41 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import json
import math
import os
from pathlib import Path
from typing import List
import hydra
import lightning as L
import numpy as np
import torch
from einops import rearrange
from lightning import LightningModule
from PIL import Image
from epidiff.utils import load_config
from epidiff.utils.media import get_bg_color, load_image
from epidiff.utils.pose import get_k_near_views
WIDTH, HEIGHT = 256, 256
K_NEAR_VIEWS = 16
# TODO: simplify this with multiview dataset
def prepare_inputs(input_img: str, input_elevation: float, sample_views_mode: str):
bg_color = get_bg_color("white")
input_img = load_image(
input_img, (WIDTH, HEIGHT), bg_color, return_type="pt"
).permute(2, 0, 1)
meta_fp = f"meta_info/transforms_{sample_views_mode}.json"
with open(meta_fp, "r") as f:
meta = json.load(f)
# Camera intrinsics
fov = meta["camera_angle_x"]
focal_length = 1 / (2 * np.tan(0.5 * fov))
intrinsics_4x4 = torch.tensor(
[
[focal_length, 0, 0.5, 0],
[0, focal_length, 0.5, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
]
)
# Camera extrinsics
num_views = len(meta["frames"])
elevations, azimuths, c2w_matrixs = [], [], []
for frame in meta["frames"]:
elevations.append(frame["elevation"])
azimuths.append(frame["azimuth"])
c2w_matrixs.append(frame["transform_matrix"])
elevations = torch.tensor(elevations) # (N,)
azimuths = torch.tensor(azimuths) # (N,)
c2w_matrixs = torch.tensor(c2w_matrixs) # (N, 4, 4)
c2w_matrixs[:, :, 1:3] *= -1 # blender to opencv
# concat intrinsics and extrinsics
intrinsics_4x4 = (
intrinsics_4x4.unsqueeze(0).repeat(num_views, 1, 1).reshape(num_views, 16)
)
_c2w_matrixs = c2w_matrixs.reshape(num_views, 16)
camera_params = torch.cat([intrinsics_4x4, _c2w_matrixs], dim=1)
# find nearest views
k_near_indices = get_k_near_views(elevations, azimuths, K_NEAR_VIEWS, num_views)
# normalize elevations and azimuths
input_elevation = torch.tensor([input_elevation / 180 * math.pi])
d_elevations = (elevations - input_elevation).reshape(-1, 1)
d_azimuths = azimuths.reshape(-1, 1) % (2 * math.pi)
distances = torch.zeros_like(d_elevations)
return {
"image_0": input_img,
"elevations": d_elevations,
"azimuths": d_azimuths,
"distances": distances,
"c2w_matrixs": c2w_matrixs,
"cameras": camera_params,
"k_near_indices": k_near_indices,
}
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/baseline.yaml")
parser.add_argument("--ckpt", type=str, required=True)
parser.add_argument("--input_img", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--elevation", type=float, required=True)
parser.add_argument(
"--sample_views_mode", type=str, choices=["ele30"], default="ele30"
)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--device", type=str, default="cuda")
args, extras = parser.parse_known_args()
output_dir = Path(args.output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
L.seed_everything(args.seed, workers=True)
cfg = load_config(args.config, cli_args=extras)
# prepare model
model: LightningModule = hydra.utils.instantiate(cfg.system)
model.load_weights(args.ckpt)
model = model.to(args.device).eval()
print(f"Loaded model from {args.ckpt}")
# prepare data
data = prepare_inputs(args.input_img, args.elevation, args.sample_views_mode)
for k, v in data.items():
data[k] = v.unsqueeze(0).to(args.device)
if k not in ["k_near_indices"]:
data[k] = data[k].float()
# generate
with torch.no_grad():
images_pred = model._generate_images(data)
# save
image_base_name = os.path.basename(args.input_img).split(".")[0]
image_list = []
for image in images_pred[0]:
image_list.append(Image.fromarray(image))
image_list[0].save(
output_dir / f"{image_base_name}.gif",
save_all=True,
append_images=image_list[1:],
duration=100,
loop=0,
)
full_image = rearrange(images_pred, "b m h w c -> (b h) (m w) c")
Image.fromarray(full_image).save(output_dir / f"{image_base_name}.jpg")
if __name__ == "__main__":
main()