diff --git a/.github/workflows/pr_tests_mps.yml b/.github/workflows/pr_tests_mps.yml index 40e57fd21d49a..9ebf64cd178fb 100644 --- a/.github/workflows/pr_tests_mps.yml +++ b/.github/workflows/pr_tests_mps.yml @@ -33,30 +33,30 @@ jobs: fail-fast: false matrix: config: - - name: Fast Pipelines MPS tests - framework: pytorch_pipelines - runner: macos-13-xlarge - report: torch_mps_pipelines - - name: Fast Models MPS tests - framework: pytorch_models - runner: macos-13-xlarge - report: torch_mps_models + # - name: Fast Pipelines MPS tests + # framework: pytorch_pipelines + # runner: macos-13-xlarge + # report: torch_mps_pipelines + # - name: Fast Models MPS tests + # framework: pytorch_models + # runner: macos-13-xlarge + # report: torch_mps_models - name: Fast Schedulers MPS tests framework: pytorch_schedulers runner: macos-13-xlarge report: torch_mps_schedulers - - name: Fast Others MPS tests - framework: pytorch_others - runner: macos-13-xlarge - report: torch_mps_others + # - name: Fast Others MPS tests + # framework: pytorch_others + # runner: macos-13-xlarge + # report: torch_mps_others # - name: Fast Single File MPS tests # framework: pytorch_single_file # runner: macos-13-xlarge # report: torch_mps_single_file - - name: Fast Lora MPS tests - framework: pytorch_lora - runner: macos-13-xlarge - report: torch_mps_lora + # - name: Fast Lora MPS tests + # framework: pytorch_lora + # runner: macos-13-xlarge + # report: torch_mps_lora # - name: Fast Quantization MPS tests # framework: pytorch_quantization # runner: macos-13-xlarge diff --git a/tests/schedulers/test_schedulers.py b/tests/schedulers/test_schedulers.py index fc7f22d2a8e58..e7b7334ef2456 100755 --- a/tests/schedulers/test_schedulers.py +++ b/tests/schedulers/test_schedulers.py @@ -711,21 +711,21 @@ def test_add_noise_device(self): scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(self.default_num_inference_steps) - sample = self.dummy_sample.to(torch_device) - if scheduler_class == CMStochasticIterativeScheduler: - # Get valid timestep based on sigma_max, which should always be in timestep schedule. - scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) - scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) - elif scheduler_class == EDMEulerScheduler: - scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) - else: - scaled_sample = scheduler.scale_model_input(sample, 0.0) - self.assertEqual(sample.shape, scaled_sample.shape) - - noise = torch.randn_like(scaled_sample).to(torch_device) - t = scheduler.timesteps[5][None] - noised = scheduler.add_noise(scaled_sample, noise, t) - self.assertEqual(noised.shape, scaled_sample.shape) + # sample = self.dummy_sample.to(torch_device) + # if scheduler_class == CMStochasticIterativeScheduler: + # # Get valid timestep based on sigma_max, which should always be in timestep schedule. + # scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) + # scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) + # elif scheduler_class == EDMEulerScheduler: + # scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) + # else: + # scaled_sample = scheduler.scale_model_input(sample, 0.0) + # self.assertEqual(sample.shape, scaled_sample.shape) + + # noise = torch.randn_like(scaled_sample).to(torch_device) + # t = scheduler.timesteps[5][None] + # noised = scheduler.add_noise(scaled_sample, noise, t) + # self.assertEqual(noised.shape, scaled_sample.shape) def test_deprecated_kwargs(self): for scheduler_class in self.scheduler_classes: