diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py
index 4357d4056262..89bc34a6471e 100644
--- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py
+++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py
@@ -906,15 +906,17 @@ def denoising_value_valid(dnv):
             negative_aesthetic_score,
             dtype=prompt_embeds.dtype,
         )
+        add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
 
         if do_classifier_free_guidance:
             prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
             add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
+            add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
             add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
 
         prompt_embeds = prompt_embeds.to(device)
         add_text_embeds = add_text_embeds.to(device)
-        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
+        add_time_ids = add_time_ids.to(device)
 
         # 9. Denoising loop
         num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py
index 06ca880910a0..cd51618e4eeb 100644
--- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py
+++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py
@@ -1168,15 +1168,17 @@ def denoising_value_valid(dnv):
             negative_aesthetic_score,
             dtype=prompt_embeds.dtype,
         )
+        add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
 
         if do_classifier_free_guidance:
             prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
             add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
+            add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
             add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
 
         prompt_embeds = prompt_embeds.to(device)
         add_text_embeds = add_text_embeds.to(device)
-        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
+        add_time_ids = add_time_ids.to(device)
 
         # 11. Denoising loop
         num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
index 4f366b3052d5..15371cd0b01f 100644
--- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
+++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
@@ -811,6 +811,7 @@ def __call__(
             negative_aesthetic_score,
             dtype=prompt_embeds.dtype,
         )
+        add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
 
         original_prompt_embeds_len = len(prompt_embeds)
         original_add_text_embeds_len = len(add_text_embeds)
@@ -819,6 +820,7 @@ def __call__(
         if do_classifier_free_guidance:
             prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds], dim=0)
             add_text_embeds = torch.cat([add_text_embeds, negative_pooled_prompt_embeds], dim=0)
+            add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
             add_time_ids = torch.cat([add_time_ids, add_neg_time_ids], dim=0)
 
         # Make dimensions consistent
@@ -828,7 +830,7 @@ def __call__(
 
         prompt_embeds = prompt_embeds.to(device).to(torch.float32)
         add_text_embeds = add_text_embeds.to(device).to(torch.float32)
-        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
+        add_time_ids = add_time_ids.to(device)
 
         # 11. Denoising loop
         self.unet = self.unet.to(torch.float32)
diff --git a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py
index 2b602ec3a20b..1e879151ac2f 100644
--- a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py
+++ b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py
@@ -64,7 +64,7 @@ def get_dummy_components(self, skip_first_text_encoder=False):
             addition_embed_type="text_time",
             addition_time_embed_dim=8,
             transformer_layers_per_block=(1, 2),
-            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
+            projection_class_embeddings_input_dim=72,  # 5 * 8 + 32
             cross_attention_dim=64 if not skip_first_text_encoder else 32,
         )
         scheduler = EulerDiscreteScheduler(
@@ -113,9 +113,18 @@ def get_dummy_components(self, skip_first_text_encoder=False):
             "tokenizer": tokenizer if not skip_first_text_encoder else None,
             "text_encoder_2": text_encoder_2,
             "tokenizer_2": tokenizer_2,
+            "requires_aesthetics_score": True,
         }
         return components
 
+    def test_components_function(self):
+        init_components = self.get_dummy_components()
+        init_components.pop("requires_aesthetics_score")
+        pipe = self.pipeline_class(**init_components)
+
+        self.assertTrue(hasattr(pipe, "components"))
+        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
+
     def get_dummy_inputs(self, device, seed=0):
         image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
         image = image / 2 + 0.5
@@ -147,7 +156,7 @@ def test_stable_diffusion_xl_img2img_euler(self):
 
         assert image.shape == (1, 32, 32, 3)
 
-        expected_slice = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165])
+        expected_slice = np.array([0.4664, 0.4886, 0.4403, 0.6902, 0.5592, 0.4534, 0.5931, 0.5951, 0.5224])
 
         assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
 
@@ -165,7 +174,7 @@ def test_stable_diffusion_xl_refiner(self):
 
         assert image.shape == (1, 32, 32, 3)
 
-        expected_slice = np.array([0.4676, 0.4865, 0.4335, 0.6715, 0.5578, 0.4497, 0.5847, 0.5967, 0.5198])
+        expected_slice = np.array([0.4578, 0.4981, 0.4301, 0.6454, 0.5588, 0.4442, 0.5678, 0.5940, 0.5176])
 
         assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
 
diff --git a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py
index a85b6d6ae1a4..05ce3f11973e 100644
--- a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py
+++ b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py
@@ -66,7 +66,7 @@ def get_dummy_components(self, skip_first_text_encoder=False):
             addition_embed_type="text_time",
             addition_time_embed_dim=8,
             transformer_layers_per_block=(1, 2),
-            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
+            projection_class_embeddings_input_dim=72,  # 5 * 8 + 32
             cross_attention_dim=64 if not skip_first_text_encoder else 32,
         )
         scheduler = EulerDiscreteScheduler(
@@ -115,6 +115,7 @@ def get_dummy_components(self, skip_first_text_encoder=False):
             "tokenizer": tokenizer if not skip_first_text_encoder else None,
             "text_encoder_2": text_encoder_2,
             "tokenizer_2": tokenizer_2,
+            "requires_aesthetics_score": True,
         }
         return components
 
@@ -142,6 +143,14 @@ def get_dummy_inputs(self, device, seed=0):
         }
         return inputs
 
+    def test_components_function(self):
+        init_components = self.get_dummy_components()
+        init_components.pop("requires_aesthetics_score")
+        pipe = self.pipeline_class(**init_components)
+
+        self.assertTrue(hasattr(pipe, "components"))
+        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
+
     def test_stable_diffusion_xl_inpaint_euler(self):
         device = "cpu"  # ensure determinism for the device-dependent torch.Generator
         components = self.get_dummy_components()
@@ -155,7 +164,7 @@ def test_stable_diffusion_xl_inpaint_euler(self):
 
         assert image.shape == (1, 64, 64, 3)
 
-        expected_slice = np.array([0.6965, 0.5584, 0.5693, 0.5739, 0.6092, 0.6620, 0.5902, 0.5612, 0.5319])
+        expected_slice = np.array([0.8029, 0.5523, 0.5825, 0.6003, 0.6702, 0.7018, 0.6369, 0.5955, 0.5123])
 
         assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
 
@@ -250,10 +259,9 @@ def test_stable_diffusion_xl_refiner(self):
         image = sd_pipe(**inputs).images
         image_slice = image[0, -3:, -3:, -1]
 
-        print(torch.from_numpy(image_slice).flatten())
         assert image.shape == (1, 64, 64, 3)
 
-        expected_slice = np.array([0.9106, 0.6563, 0.6766, 0.6537, 0.6709, 0.7367, 0.6537, 0.5937, 0.5418])
+        expected_slice = np.array([0.7045, 0.4838, 0.5454, 0.6270, 0.6168, 0.6717, 0.6484, 0.5681, 0.4922])
 
         assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
 
diff --git a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py
index e14a7f7fb9a9..bbb0fe698087 100644
--- a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py
+++ b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py
@@ -68,7 +68,7 @@ def get_dummy_components(self):
             addition_embed_type="text_time",
             addition_time_embed_dim=8,
             transformer_layers_per_block=(1, 2),
-            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
+            projection_class_embeddings_input_dim=72,  # 5 * 8 + 32
             cross_attention_dim=64,
         )
 
@@ -118,8 +118,7 @@ def get_dummy_components(self):
             "tokenizer": tokenizer,
             "text_encoder_2": text_encoder_2,
             "tokenizer_2": tokenizer_2,
-            # "safety_checker": None,
-            # "feature_extractor": None,
+            "requires_aesthetics_score": True,
         }
         return components
 
@@ -141,6 +140,14 @@ def get_dummy_inputs(self, device, seed=0):
         }
         return inputs
 
+    def test_components_function(self):
+        init_components = self.get_dummy_components()
+        init_components.pop("requires_aesthetics_score")
+        pipe = self.pipeline_class(**init_components)
+
+        self.assertTrue(hasattr(pipe, "components"))
+        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
+
     def test_inference_batch_single_identical(self):
         super().test_inference_batch_single_identical(expected_max_diff=3e-3)