diff --git a/src/diffusers/schedulers/scheduling_ddim_inverse.py b/src/diffusers/schedulers/scheduling_ddim_inverse.py index ea2d4945bd75..f1fe6a686171 100644 --- a/src/diffusers/schedulers/scheduling_ddim_inverse.py +++ b/src/diffusers/schedulers/scheduling_ddim_inverse.py @@ -293,9 +293,6 @@ def step( model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, - eta: float = 0.0, - use_clipped_model_output: bool = False, - variance_noise: Optional[torch.FloatTensor] = None, return_dict: bool = True, ) -> Union[DDIMSchedulerOutput, Tuple]: """ @@ -332,7 +329,7 @@ def step( # 1. get previous step value (=t+1) prev_timestep = timestep timestep = min( - timestep - self.config.num_train_timesteps // self.num_inference_steps, self.num_train_timesteps - 1 + timestep - self.config.num_train_timesteps // self.num_inference_steps, self.config.num_train_timesteps - 1 ) # 2. compute alphas, betas diff --git a/tests/schedulers/test_scheduler_ddim_inverse.py b/tests/schedulers/test_scheduler_ddim_inverse.py index ab6596b98b3e..696f57644a83 100644 --- a/tests/schedulers/test_scheduler_ddim_inverse.py +++ b/tests/schedulers/test_scheduler_ddim_inverse.py @@ -7,7 +7,7 @@ class DDIMInverseSchedulerTest(SchedulerCommonTest): scheduler_classes = (DDIMInverseScheduler,) - forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50)) + forward_default_kwargs = (("num_inference_steps", 50),) def get_scheduler_config(self, **kwargs): config = { @@ -26,7 +26,7 @@ def full_loop(self, **config): scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) - num_inference_steps, eta = 10, 0.0 + num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter @@ -35,7 +35,7 @@ def full_loop(self, **config): for t in scheduler.timesteps: residual = model(sample, t) - sample = scheduler.step(residual, t, sample, eta).prev_sample + sample = scheduler.step(residual, t, sample).prev_sample return sample