-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathconfig.py
51 lines (40 loc) · 1.79 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from dataclasses import dataclass
from typing import Optional
from ...import_utils import tesnorrt_llm_version
from ..config import BackendConfig
SUPPORTED_DTYPES = [None, "float16", "bfloat16", "float32"]
@dataclass
class TRTLLMConfig(BackendConfig):
name: str = "tensorrt-llm"
version: Optional[str] = tesnorrt_llm_version()
_target_: str = "optimum_benchmark.backends.tensorrt_llm.backend.TRTLLMBackend"
no_weights: bool = False
# trtllm kwargs
tp: Optional[int] = None
pp: Optional[int] = None
dtype: Optional[str] = None
use_fp8: Optional[bool] = None
world_size: Optional[int] = None
gpus_per_node: Optional[int] = None
max_input_len: Optional[int] = None
max_output_len: Optional[int] = None
max_batch_size: Optional[int] = None
max_new_tokens: Optional[int] = None
max_prompt_length: Optional[int] = None
optimization_level: Optional[int] = None
use_cuda_graph: Optional[bool] = None
def __post_init__(self) -> None:
super().__post_init__()
if self.device != "cuda":
raise NotImplementedError(f"TRTLLMBackend only supports device cuda, got {self.device}")
if self.dtype not in SUPPORTED_DTYPES:
raise ValueError(f"dtype must be one of float16, bfloat16, float32, got {self.dtype}")
if self.gpus_per_node is not None and self.world_size is not None and self.gpus_per_node != self.world_size:
raise ValueError(f"gpus_per_node ({self.gpus_per_node}) != world_size ({self.world_size})")
if (
self.world_size is not None
and self.pp is not None
and self.tp is not None
and self.world_size != self.pp * self.tp
):
raise ValueError(f"world_size ({self.gpus_per_node}) != pp ({self.pp}) * tp ({self.tp})")