generated from fastai/nbdev_template
-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathrloo_config.py
110 lines (103 loc) · 4.4 KB
/
rloo_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from ..trainer.utils import OnPolicyConfig
@dataclass
class RLOOConfig(OnPolicyConfig):
r"""
Configuration class for the [`RLOOTrainer`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
exp_name (`str`, *optional*, defaults to `os.path.basename(__file__)[: -len(".py")]`):
Name of this experiment.
reward_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`):
Path to the reward model.
num_ppo_epochs (`int`, *optional*, defaults to `4`):
Number of epochs to train.
whiten_rewards (`bool`, *optional*, defaults to `False`):
Whether to whiten the rewards.
kl_coef (`float`, *optional*, defaults to `0.05`):
KL coefficient.
cliprange (`float`, *optional*, defaults to `0.2`):
Clip range.
rloo_k (`int`, *optional*, defaults to `2`):
REINFORCE Leave-One-Out (RLOO) number of online samples per prompt.
normalize_reward (`bool`, *optional*, defaults to `False`):
Whether to normalize rewards.
reward_clip_range (`float`, *optional*, defaults to `10.0`):
Clip range for rewards.
normalize_advantage (`bool`, *optional*, defaults to `False`):
Whether to normalize advantages.
token_level_kl (`bool`, *optional*, defaults to `True`):
Whether to use token-level KL penalty or sequence-level KL penalty.
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
improving generation speed. However, disabling this option allows training models that exceed the VRAM
capacity of a single GPU, albeit at the cost of slower generation.
"""
exp_name: str = field(
default=os.path.basename(__file__)[:-3],
metadata={"help": "Name of this experiment."},
)
reward_model_path: str = field(
default="EleutherAI/pythia-160m",
metadata={"help": "Path to the reward model."},
)
num_ppo_epochs: int = field(
default=4,
metadata={"help": "Number of epochs to train."},
)
whiten_rewards: bool = field(
default=False,
metadata={"help": "Whether to whiten the rewards."},
)
kl_coef: float = field(
default=0.05,
metadata={"help": "KL coefficient."},
)
cliprange: float = field(
default=0.2,
metadata={"help": "Clip range."},
)
rloo_k: int = field(
default=2,
metadata={"help": "REINFORCE Leave-One-Out (RLOO) number of online samples per prompt."},
)
normalize_reward: bool = field(
default=False,
metadata={"help": "Whether to normalize rewards"},
)
reward_clip_range: float = field(
default=10.0,
metadata={"help": "Clip range for rewards"},
)
normalize_advantage: bool = field(
default=False,
metadata={"help": "Whether to normalize advantages"},
)
token_level_kl: bool = field(
default=False,
metadata={"help": "Whether to use token-level KL penalty or sequence-level KL penalty"},
)
ds3_gather_for_generation: bool = field(
default=True,
metadata={
"help": "This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for "
"generation, improving generation speed. However, disabling this option allows training models that "
"exceed the VRAM capacity of a single GPU, albeit at the cost of slower generation."
},
)