We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
完整报错信息:
ReResNet Orientation: 8 Fix Params: False 2022-06-25 00:20:44,437 - mmdet - INFO - Environment info: ------------------------------------------------------------ sys.platform: linux Python: 3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0] CUDA available: True CUDA_HOME: /usr/local/cuda NVCC: Build cuda_11.7.r11.7/compiler.31294372_0 GPU 0: NVIDIA GeForce RTX 2080 Ti GCC: gcc (Ubuntu 11.2.0-19ubuntu1) 11.2.0 PyTorch: 1.4.0 PyTorch compiling details: PyTorch built with: - GCC 7.3 - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v0.21.1 (Git Hash 7d2fd500bc78936d1d648ca713b901012f470dbc) - OpenMP 201511 (a.k.a. OpenMP 4.5) - NNPACK is enabled - CUDA Runtime 10.1 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37 - CuDNN 7.6.3 - Magma 2.5.1 - Build settings: BLAS=MKL, BUILD_NAMEDTENSOR=OFF, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Wno-stringop-overflow, DISABLE_NUMA=1, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF, TorchVision: 0.5.0 OpenCV: 4.6.0 MMCV: 0.6.2 MMDetection: 1.1.0+258d792 MMDetection Compiler: GCC 11.2 MMDetection CUDA Compiler: 11.7 ------------------------------------------------------------ 2022-06-25 00:20:44,437 - mmdet - INFO - Distributed training: False 2022-06-25 00:20:44,437 - mmdet - INFO - Config: /home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/configs/dota/r50_dotav1.py work_dir = 'work_dirs/r50_dotav1/' # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( type='OrientedRepPointsDetector', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', ), neck= dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, num_outs=5, norm_cfg=norm_cfg ), bbox_head=dict( type='OrientedRepPointsHead', num_classes=16, in_channels=256, feat_channels=256, point_feat_channels=256, stacked_convs=3, num_points=9, gradient_mul=0.3, point_strides=[8, 16, 32, 64, 128], point_base_scale=2, norm_cfg=norm_cfg, loss_cls=dict(type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_rbox_init=dict(type='GIoULoss', loss_weight=0.375), loss_rbox_refine=dict(type='GIoULoss', loss_weight=1.0), loss_spatial_init=dict(type='SpatialBorderLoss', loss_weight=0.05), loss_spatial_refine=dict(type='SpatialBorderLoss', loss_weight=0.1), top_ratio=0.4,)) # training and testing settings train_cfg = dict( init=dict( assigner=dict(type='PointAssigner', scale=4, pos_num=1), # 每个gtbox仅选一个正样本 allowed_border=-1, pos_weight=-1, debug=False), refine=dict( assigner=dict( type='MaxIoUAssigner', #pre-assign to select more samples for samples selection pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) test_cfg = dict( nms_pre=2000, min_bbox_size=0, score_thr=0.05, nms=dict(type='rnms', iou_thr=0.4), max_per_img=2000) # dataset settings dataset_type = 'DotaDatasetv1' data_root = '/home/r/文档/WPW/Remote/DataSets/Dota-v1.5/' #'data/dataset_demo_split/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='CorrectRBBox', correct_rbbox=True, refine_rbbox=True), dict(type='PolyResize', img_scale=[(1333, 768), (1333, 1280)], keep_ratio=True, multiscale_mode='range', clamp_rbbox=False), dict(type='PolyRandomFlip', flip_ratio=0.5), #dict(type='HSVAugment', hgain=0.015, sgain=0.7, vgain=0.4), #dict(type='PolyRandomRotate', rotate_ratio=0.5, angles_range=180, auto_bound=False), dict(type='Pad', size_divisor=32), #dict(type='Poly_Mosaic_RandomPerspective', mosaic_ratio=0.5, ifcrop=True, degrees=0, translate=0.1, scale=0.2, shear=0, perspective=0.0), #dict(type='MixUp', mixup_ratio=0.5), dict(type='PolyImgPlot', img_save_path=work_dir, save_img_num=16, class_num=15, thickness=2), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1024, 1024), flip=False, transforms=[ dict(type='PolyResize', keep_ratio=True), dict(type='PolyRandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'trainval_split/' + 'trainval.json', img_prefix=data_root + 'trainval_split/' + 'images/', pipeline=train_pipeline, Mosaic4=False, Mosaic9=False, Mixup=False), val=dict( type=dataset_type, ann_file=data_root + 'trainval_split/' + 'trainval.json', img_prefix=data_root + 'trainval_split/' + 'images/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'test_split/' + 'test.json', img_prefix=data_root + 'test_split/' + 'images/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox') # optimizer optimizer = dict(type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[24, 32, 38]) checkpoint_config = dict(interval=20) # yapf:disable log_config = dict( interval=1, # 迭代n次时打印一次 hooks=[ dict(type='TextLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 40 dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None#'work_dirs/orientedreppoints_r50_demo/latest.pth' workflow = [('train', 1)] 2022-06-25 00:20:44,666 - mmdet - INFO - load model from: torchvision://resnet50 2022-06-25 00:20:44,779 - mmdet - WARNING - The model and loaded state dict do not match exactly unexpected key in source state_dict: fc.weight, fc.bias loading annotations into memory... Done (t=4.07s) creating index... index created! 2022-06-25 00:20:50,462 - mmdet - INFO - Start running, host: r@4508, work_dir: /home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/work_dirs/r50_dotav1 2022-06-25 00:20:50,462 - mmdet - INFO - workflow: [('train', 1)], max: 40 epochs Traceback (most recent call last): File "tools/train.py", line 154, in <module> main() File "tools/train.py", line 143, in main train_detector( File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/apis/train.py", line 105, in train_detector _non_dist_train( File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/apis/train.py", line 244, in _non_dist_train runner.run(data_loaders, cfg.workflow, cfg.total_epochs) File "/home/r/miniconda3/envs/orientedreppoints/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 122, in run epoch_runner(data_loaders[i], **kwargs) File "/home/r/miniconda3/envs/orientedreppoints/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 34, in train outputs = self.batch_processor( File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/apis/train.py", line 75, in batch_processor losses = model(**data) File "/home/r/miniconda3/envs/orientedreppoints/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in __call__ result = self.forward(*input, **kwargs) File "/home/r/miniconda3/envs/orientedreppoints/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 150, in forward return self.module(*inputs[0], **kwargs[0]) File "/home/r/miniconda3/envs/orientedreppoints/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in __call__ result = self.forward(*input, **kwargs) File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/core/fp16/decorators.py", line 49, in new_func return old_func(*args, **kwargs) File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/models/detectors/base.py", line 147, in forward return self.forward_train(img, img_metas, **kwargs) File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/models/detectors/orientedreppoints_detector.py", line 31, in forward_train losses = self.bbox_head.loss( File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/models/anchor_heads/orientedreppoints_head.py", line 388, in loss cls_reg_targets_refine = refine_pointset_target( File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/core/bbox/pointset_target.py", line 148, in refine_pointset_target all_proposal_weights, pos_inds_list, neg_inds_list, all_gt_inds) = multi_apply( File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/core/utils/misc.py", line 24, in multi_apply return tuple(map(list, zip(*map_results))) File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/core/bbox/pointset_target.py", line 190, in refine_pointset_target_single assign_result = bbox_assigner.assign(proposals, gt_rbboxes, File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/core/bbox/assigners/max_iou_assigner.py", line 80, in assign assign_result = self.assign_wrt_overlaps(overlaps, gt_labels) File "/home/r/文档/WPW/Remote/Projects/OrientedRepPoints_DOTA/mmdet/core/bbox/assigners/max_iou_assigner.py", line 92, in assign_wrt_overlaps assigned_gt_inds = overlaps.new_full((num_bboxes,), RuntimeError: CUDA error: too many resources requested for launch
The text was updated successfully, but these errors were encountered:
请问解决了吗,我也有同样的问题
Sorry, something went wrong.
请问你解决了吗,我也遇到了同样的
请问解决了吗,我也有同样的问题 请问你解决了吗,我也遇到了同样的
我记得当时是重装了一遍环境解决的,问题有点久了可能记不清
No branches or pull requests
完整报错信息:
The text was updated successfully, but these errors were encountered: