-
Notifications
You must be signed in to change notification settings - Fork 427
/
val.py
401 lines (351 loc) · 20.1 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 model accuracy on a custom dataset
Usage:
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
import argparse
import json
import os
import sys
from pathlib import Path
from threading import Thread
import numpy as np
import torch
from tqdm import tqdm
from utils.rboxs_utils import poly2hbb, rbox2poly
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
scale_coords, scale_polys, xywh2xyxy, xyxy2xywh, non_max_suppression_obb)
from utils.metrics import ConfusionMatrix, ap_per_class
from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, time_sync
def save_one_txt(predn, save_conf, shape, file):
# Save one txt result
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# def save_one_json(predn, jdict, path, class_map):
def save_one_json(pred_hbbn, pred_polyn, jdict, path, class_map):
"""
Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236, "poly": [...]}
Args:
pred_hbbn (tensor): (n, [poly, conf, cls])
pred_polyn (tensor): (n, [xyxy, conf, cls])
"""
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(pred_hbbn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred_polyn.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': class_map[int(p[-1]) + 1], # COCO's category_id start from 1, not 0
'bbox': [round(x, 1) for x in b],
'score': round(p[-2], 5),
'poly': [round(x, 1) for x in p[:8]],
'file_name': path.stem})
def process_batch(detections, labels, iouv):
"""
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (Array[N, 10]), for 10 IoU levels
"""
correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
matches = torch.Tensor(matches).to(iouv.device)
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
return correct
@torch.no_grad()
def run(data,
weights=None, # model.pt path(s)
batch_size=32, # batch size
imgsz=640, # inference size (pixels)
conf_thres=0.01, # confidence threshold
iou_thres=0.4, # NMS IoU threshold
task='val', # train, val, test, speed or study
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
single_cls=False, # treat as single-class dataset
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_json=False, # save a COCO-JSON results file
project=ROOT / 'runs/val', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=True, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
save_dir=Path(''),
plots=True,
callbacks=Callbacks(),
compute_loss=None,
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
half &= device.type != 'cpu' # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt or jit:
model.model.half() if half else model.model.float()
elif engine:
batch_size = model.batch_size
else:
half = False
batch_size = 1 # export.py models default to batch-size 1
device = torch.device('cpu')
LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends')
# Data
data = check_dataset(data) # check
# Configure
model.eval()
is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95
niou = iouv.numel()
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
# Dataloader
if not training:
model.warmup(imgsz=(1, 3, imgsz, imgsz), half=half) # warmup
pad = 0.0 if task == 'speed' else 0.5
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
dataloader = create_dataloader(data[task], imgsz, batch_size, stride, names, single_cls, pad=pad, rect=pt,
workers=workers, prefix=colorstr(f'{task}: '))[0]
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
# names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', ' [email protected]:.95')
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
# loss = torch.zeros(3, device=device)
loss = torch.zeros(4, device=device)
jdict, stats, ap, ap_class = [], [], [], []
pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
# targets (tensor): (n_gt_all_batch, [img_index clsid cx cy l s theta gaussian_θ_labels]) θ ∈ [-pi/2, pi/2)
# shapes (tensor): (b, [(h_raw, w_raw), (hw_ratios, wh_paddings)])
t1 = time_sync()
if pt or jit or engine:
im = im.to(device, non_blocking=True)
targets = targets.to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
nb, _, height, width = im.shape # batch size, channels, height, width
t2 = time_sync()
dt[0] += t2 - t1
# Inference
out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
dt[1] += time_sync() - t2
# Loss
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls, theta
# NMS
# targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t3 = time_sync()
# out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
out = non_max_suppression_obb(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) # list*(n, [xylsθ, conf, cls]) θ ∈ [-pi/2, pi/2)
dt[2] += time_sync() - t3
# Metrics
for si, pred in enumerate(out): # pred (tensor): (n, [xylsθ, conf, cls])
labels = targets[targets[:, 0] == si, 1:7] # labels (tensor):(n_gt, [clsid cx cy l s theta]) θ[-pi/2, pi/2)
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
path, shape = Path(paths[si]), shapes[si][0] # shape (tensor): (h_raw, w_raw)
seen += 1
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
# Predictions
if single_cls:
# pred[:, 5] = 0
pred[:, 6] = 0
poly = rbox2poly(pred[:, :5]) # (n, 8)
pred_poly = torch.cat((poly, pred[:, -2:]), dim=1) # (n, [poly, conf, cls])
hbbox = xywh2xyxy(poly2hbb(pred_poly[:, :8])) # (n, [x1 y1 x2 y2])
pred_hbb = torch.cat((hbbox, pred_poly[:, -2:]), dim=1) # (n, [xyxy, conf, cls])
pred_polyn = pred_poly.clone() # predn (tensor): (n, [poly, conf, cls])
scale_polys(im[si].shape[1:], pred_polyn[:, :8], shape, shapes[si][1]) # native-space pred
hbboxn = xywh2xyxy(poly2hbb(pred_polyn[:, :8])) # (n, [x1 y1 x2 y2])
pred_hbbn = torch.cat((hbboxn, pred_polyn[:, -2:]), dim=1) # (n, [xyxy, conf, cls]) native-space pred
# Evaluate
if nl:
# tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
tpoly = rbox2poly(labels[:, 1:6]) # target poly
tbox = xywh2xyxy(poly2hbb(tpoly)) # target hbb boxes [xyxy]
scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labels_hbbn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels (n, [cls xyxy])
correct = process_batch(pred_hbbn, labels_hbbn, iouv)
if plots:
confusion_matrix.process_batch(pred_hbbn, labels_hbbn)
else:
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
# stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
stats.append((correct.cpu(), pred_poly[:, 8].cpu(), pred_poly[:, 9].cpu(), tcls)) # (correct, conf, pcls, tcls)
# Save/log
if save_txt: # just save hbb pred results!
save_one_txt(pred_hbbn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
# LOGGER.info('The horizontal prediction results has been saved in txt, which format is [cls cx cy w h /conf/]')
if save_json: # save hbb pred results and poly pred results.
save_one_json(pred_hbbn, pred_polyn, jdict, path, class_map) # append to COCO-JSON dictionary
# LOGGER.info('The hbb and obb results has been saved in json file')
callbacks.run('on_val_image_end', pred_hbb, pred_hbbn, path, names, im[si])
# Plot images
if plots and batch_i < 3:
f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
# Compute metrics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
if not training:
shape = (batch_size, 3, imgsz, imgsz)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
callbacks.run('on_val_end')
# Save JSON
if save_json and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
pred_json = str(save_dir / f"{w}_obb_predictions.json") # predictions json
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
with open(pred_json, 'w') as f:
json.dump(jdict, f)
LOGGER.info('---------------------The hbb and obb results has been saved in json file-----------------------')
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements(['pycocotools'])
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results ([email protected]:0.95, [email protected])
except Exception as e:
LOGGER.info(f'pycocotools unable to run: {e}')
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT / 'data/DroneVehicle_poly.yaml', help='dataset.yaml path')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'runs/train/yolov5n_DroneVehicle/weights/best.pt', help='model.pt path(s)')
parser.add_argument('--batch-size', type=int, default=8, help='batch size')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=1024, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.01, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.4, help='NMS IoU threshold')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
opt.save_json |= opt.data.endswith('coco.yaml')
opt.save_txt |= opt.save_hybrid
print_args(FILE.stem, opt)
return opt
def main(opt):
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
if opt.task in ('train', 'val', 'test'): # run normally
# if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
if opt.conf_thres > 0.01:
LOGGER.info(f'WARNING: In oriented detection, confidence threshold {opt.conf_thres} >> 0.01 will produce invalid mAP values.')
run(**vars(opt))
else:
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
opt.half = True # FP16 for fastest results
if opt.task == 'speed': # speed benchmarks
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
for opt.weights in weights:
run(**vars(opt), plots=False)
elif opt.task == 'study': # speed vs mAP benchmarks
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
for opt.weights in weights:
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
for opt.imgsz in x: # img-size
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
r, _, t = run(**vars(opt), plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_val_study(x=x) # plot
if __name__ == "__main__":
opt = parse_opt()
main(opt)