-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathname_dataset.py
58 lines (45 loc) · 1.77 KB
/
name_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# References
# https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/01-basics/pytorch_basics/main.py
# http://pytorch.org/tutorials/beginner/data_loading_tutorial.html#dataset-class
import torch
import numpy as np
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import csv
import gzip
class NameDataset(Dataset):
""" Diabetes dataset."""
# Initialize your data, download, etc.
def __init__(self, is_train_set=False):
filename = './data/names_train.csv.gz' if is_train_set else './data/names_test.csv.gz'
with gzip.open(filename, "rt") as f:
reader = csv.reader(f)
rows = list(reader)
self.names = [row[0] for row in rows]
self.countries = [row[1] for row in rows]
self.len = len(self.countries)
self.country_list = list(sorted(set(self.countries)))
def __getitem__(self, index):
return self.names[index], self.countries[index]
def __len__(self):
return self.len
def get_countries(self):
return self.country_list
def get_country(self, id):
return self.country_list[id]
def get_country_id(self, country):
return self.country_list.index(country)
# Test the loader
if __name__ == "__main__":
dataset = NameDataset(False)
print(dataset.get_countries())
print(dataset.get_country(3))
print(dataset.get_country_id('Korean'))
train_loader = DataLoader(dataset=dataset,
batch_size=10,
shuffle=True)
print(len(train_loader.dataset))
for epoch in range(2):
for i, (names, countries) in enumerate(train_loader):
# Run your training process
print(epoch, i, "names", names, "countries", countries)