-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathexport_perframe_3DGS.py
107 lines (100 loc) · 4.79 KB
/
export_perframe_3DGS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import imageio
import numpy as np
import torch
from scene import Scene
import os
import cv2
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args, ModelHiddenParams
from gaussian_renderer import GaussianModel
from time import time
import open3d as o3d
from plyfile import PlyData, PlyElement
# import torch.multiprocessing as mp
import threading
from utils.render_utils import get_state_at_time
import concurrent.futures
def render_sets(dataset : ModelParams, hyperparam, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, skip_video: bool):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree, hyperparam)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
return gaussians, scene
def save_point_cloud(points, model_path, timestamp):
output_path = os.path.join(model_path,"point_pertimestamp")
if not os.path.exists(output_path):
os.makedirs(output_path,exist_ok=True)
points = points.detach().cpu().numpy()
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
ply_path = os.path.join(output_path,f"points_{timestamp}.ply")
o3d.io.write_point_cloud(ply_path, pcd)
def construct_list_of_attributes(feature_dc_shape, feature_rest_shape, scaling_shape,rotation_shape):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(feature_dc_shape[1]*feature_dc_shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(feature_rest_shape[1]*feature_rest_shape[2]):
l.append('f_rest_{}'.format(i))
l.append('opacity')
for i in range(scaling_shape[1]):
l.append('scale_{}'.format(i))
for i in range(rotation_shape[1]):
l.append('rot_{}'.format(i))
# breakpoint()
return l
def init_3DGaussians_ply(points, scales, rotations, opactiy, shs, feature_shape):
xyz = points.detach().cpu().numpy()
normals = np.zeros_like(xyz)
feature_dc = shs[:,0:feature_shape[0],:]
feature_rest = shs[:,feature_shape[0]:,:]
f_dc = shs[:,:feature_shape[0],:].detach().transpose(1,2).flatten(start_dim=1).contiguous().cpu().numpy()
# breakpoint()
f_rest = shs[:,feature_shape[0]:,:].detach().transpose(1,2).flatten(start_dim=1).contiguous().cpu().numpy()
opacities = opactiy.detach().cpu().numpy()
scale = scales.detach().cpu().numpy()
rotation = rotations.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in construct_list_of_attributes(feature_dc.shape, feature_rest.shape, scales.shape, rotations.shape)]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
# breakpoint()
return PlyData([el])
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
hyperparam = ModelHiddenParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--skip_video", action="store_true")
parser.add_argument("--configs", type=str)
# parser.add_argument("--model_path", type=str)
args = get_combined_args(parser)
print("Rendering " , args.model_path)
if args.configs:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
# Initialize system state (RNG)
safe_state(args.quiet)
gaussians, scene = render_sets(model.extract(args), hyperparam.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, args.skip_video)
output_path = os.path.join(args.model_path,"gaussian_pertimestamp")
os.makedirs(output_path,exist_ok=True)
print("Computing Gaussians.")
for index, viewpoint in enumerate(scene.getTestCameras()):
points, scales_final, rotations_final, opacity_final, shs_final = get_state_at_time(gaussians, viewpoint)
feature_dc_shape = gaussians._features_dc.shape[1]
feature_rest_shape = gaussians._features_rest.shape[1]
gs_ply = init_3DGaussians_ply(points, scales_final, rotations_final, opacity_final, shs_final, [feature_dc_shape, feature_rest_shape])
gs_ply.write(os.path.join(output_path,"time_{0:05d}.ply".format(index)))
print("done")