-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathmerge_many_4dgs.py
231 lines (209 loc) · 9.81 KB
/
merge_many_4dgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import imageio
import numpy as np
import torch
from scene import Scene
import os
import cv2
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args, ModelHiddenParams
from gaussian_renderer import GaussianModel
from time import time
import open3d as o3d
# import torch.multiprocessing as mp
import threading
import concurrent.futures
from copy import deepcopy
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
import math
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from scene.gaussian_model import GaussianModel
from utils.render_utils import get_state_at_time
from tqdm import tqdm
def rotate_point_cloud(point_cloud, displacement, rotation_angles, scales_bias):
theta, phi = rotation_angles
rotation_matrix_z = torch.tensor([
[torch.cos(theta), -torch.sin(theta), 0],
[torch.sin(theta), torch.cos(theta), 0],
[0, 0, 1]
]).to(point_cloud)
rotation_matrix_x = torch.tensor([
[1, 0, 0],
[0, torch.cos(phi), -torch.sin(phi)],
[0, torch.sin(phi), torch.cos(phi)]
]).to(point_cloud)
rotation_matrix = torch.matmul(rotation_matrix_z, rotation_matrix_x)
# print(rotation_matrix)
point_cloud = point_cloud*scales_bias
rotated_point_cloud = torch.matmul(point_cloud, rotation_matrix.t())
displaced_point_cloud = rotated_point_cloud + displacement
return displaced_point_cloud
@torch.no_grad()
def render(viewpoint_camera, gaussians, bg_color : torch.Tensor, scaling_modifier = 1.0, motion_bias = [torch.tensor([0,0,0])], rotation_bias = [torch.tensor([0,0])],
scales_bias=[1,1]):
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
screenspace_points = None
for pc in gaussians:
if screenspace_points is None:
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
else:
screenspace_points1 = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
screenspace_points = torch.cat([screenspace_points,screenspace_points1],dim=0)
try:
screenspace_points.retain_grad()
except:
pass
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform.cuda(),
projmatrix=viewpoint_camera.full_proj_transform.cuda(),
sh_degree=gaussians[0].active_sh_degree,
campos=viewpoint_camera.camera_center.cuda(),
prefiltered=False,
debug=False
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
# means3D = pc.get_xyz
# add deformation to each points
# deformation = pc.get_deformation
means3D_final, scales_final, rotations_final, opacity_final, shs_final = None, None, None, None, None
for index, pc in enumerate(gaussians):
means3D_final1, scales_final1, rotations_final1, opacity_final1, shs_final1 = get_state_at_time(pc, viewpoint_camera)
scales_final1 = pc.scaling_activation(scales_final1)
rotations_final1 = pc.rotation_activation(rotations_final1)
opacity_final1 = pc.opacity_activation(opacity_final1)
if index == 0:
means3D_final, scales_final, rotations_final, opacity_final, shs_final = means3D_final1, scales_final1, rotations_final1, opacity_final1, shs_final1
else:
motion_bias_t = motion_bias[index-1].to(means3D_final)
rotation_bias_t = rotation_bias[index-1].to(means3D_final)
means3D_final1 = rotate_point_cloud(means3D_final1,motion_bias_t,rotation_bias_t,scales_bias[index-1])
# breakpoint()
scales_final1 = scales_final1*scales_bias[index-1]
means3D_final = torch.cat([means3D_final,means3D_final1],dim=0)
scales_final = torch.cat([scales_final,scales_final1],dim=0)
rotations_final = torch.cat([rotations_final,rotations_final1],dim=0)
opacity_final = torch.cat([opacity_final,opacity_final1],dim=0)
shs_final = torch.cat([shs_final,shs_final1],dim=0)
colors_precomp = None
cov3D_precomp = None
rendered_image, radii, depth = rasterizer(
means3D = means3D_final,
means2D = screenspace_points,
shs = shs_final,
colors_precomp = colors_precomp,
opacities = opacity_final,
scales = scales_final,
rotations = rotations_final,
cov3D_precomp = cov3D_precomp)
return {"render": rendered_image,
"viewspace_points": screenspace_points,
"visibility_filter" : radii > 0,
"radii": radii,
"depth":depth}
def init_gaussians(dataset : ModelParams, hyperparam, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, skip_video: bool):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree, hyperparam)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
print("hello!!")
return gaussians, scene, background
def save_point_cloud(points, model_path, timestamp):
output_path = os.path.join(model_path,"point_pertimestamp")
if not os.path.exists(output_path):
os.makedirs(output_path,exist_ok=True)
points = points.detach().cpu().numpy()
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
ply_path = os.path.join(output_path,f"points_{timestamp}.ply")
o3d.io.write_point_cloud(ply_path, pcd)
# This scripts can help you to merge many 4DGS.
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
hyperparam = ModelHiddenParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--skip_video", action="store_true")
parser.add_argument("--configs1", type=str, default="arguments/dynerf_9/flame_salmon_1.py")
parser.add_argument("--configs2", type=str, default="arguments/dnerf_tv_2/hellwarrior.py")
parser.add_argument("--modelpath2", type=str, default="output/dnerf_tv_2/hellwarrior")
parser.add_argument("--configs3", type=str, default="arguments/dnerf_tv_2/mutant.py")
parser.add_argument("--modelpath3", type=str, default="output/dnerf_tv_2/mutant")
render_path = "output/editing_render_flame_salmon"
args = get_combined_args(parser)
print("Rendering " , args.model_path)
args2 = deepcopy(args)
args3 = deepcopy(args)
if args.configs1:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args.configs1)
args1 = merge_hparams(args, config)
# breakpoint()
if args2.configs2:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args2.configs2)
args2 = merge_hparams(args2, config)
args2.model_path = args2.modelpath2
if args3.configs3:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args3.configs3)
args3 = merge_hparams(args3, config)
args3.model_path = args3.modelpath3
safe_state(args.quiet)
gaussians1, scene1, background = init_gaussians(model.extract(args1), hyperparam.extract(args1), args1.iteration, pipeline.extract(args1), args1.skip_train, args1.skip_test, args1.skip_video)
gaussians2, scene2, background = init_gaussians(model.extract(args2), hyperparam.extract(args2), args2.iteration, pipeline.extract(args2), args2.skip_train, args2.skip_test, args2.skip_video)
gaussians3, scene3, background = init_gaussians(model.extract(args3), hyperparam.extract(args3), args3.iteration, pipeline.extract(args3), args3.skip_train, args3.skip_test, args3.skip_video)
gaussians = [gaussians1,gaussians2,gaussians3]
# breakpoint()
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
render_images=[]
if not os.path.exists(render_path):
os.makedirs(render_path,exist_ok=True)
for index, viewpoint in tqdm(enumerate(scene1.getVideoCameras())):
result = render(viewpoint, gaussians,
bg_color=background,
motion_bias=[
torch.tensor([4,4,12]),
torch.tensor([-2,4,12])
]
,rotation_bias=[
torch.tensor([0,1.9*np.pi/4]),
torch.tensor([0,1.9*np.pi/4])
],
scales_bias = [1,1])
render_images.append(to8b(result["render"]).transpose(1,2,0))
torchvision.utils.save_image(result["render"],os.path.join(render_path,f"output_image{index}.png"))
imageio.mimwrite(os.path.join(render_path, 'video_rgb.mp4'), render_images, fps=30, codec='libx265')