-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmetric.py
176 lines (142 loc) · 5.4 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import math
import os
import imageio
import lpips
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# Mean Square Error
class MSE(object):
def __call__(self, pred, gt):
return torch.mean((pred - gt) ** 2)
# Peak Signal to Noise Ratio
class PSNR(object):
def __call__(self, pred, gt):
mse = torch.mean((pred - gt) ** 2)
return 10 * torch.log10(1 / mse)
# structural similarity index
class SSIM(object):
'''
borrowed from https://github.com/huster-wgm/Pytorch-metrics/blob/master/metrics.py
'''
def gaussian(self, w_size, sigma):
gauss = torch.Tensor([math.exp(-(x - w_size//2)**2/float(2*sigma**2)) for x in range(w_size)])
return gauss/gauss.sum()
def create_window(self, w_size, channel=1):
_1D_window = self.gaussian(w_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, w_size, w_size).contiguous()
return window
def __call__(self, y_pred, y_true, w_size=11, size_average=True, full=False):
"""
args:
y_true : 4-d ndarray in [batch_size, channels, img_rows, img_cols]
y_pred : 4-d ndarray in [batch_size, channels, img_rows, img_cols]
w_size : int, default 11
size_average : boolean, default True
full : boolean, default False
return ssim, larger the better
"""
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
if torch.max(y_pred) > 128:
max_val = 255
else:
max_val = 1
if torch.min(y_pred) < -0.5:
min_val = -1
else:
min_val = 0
L = max_val - min_val
padd = 0
(_, channel, height, width) = y_pred.size()
window = self.create_window(w_size, channel=channel).to(y_pred.device)
mu1 = F.conv2d(y_pred, window, padding=padd, groups=channel)
mu2 = F.conv2d(y_true, window, padding=padd, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(y_pred * y_pred, window, padding=padd, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(y_true * y_true, window, padding=padd, groups=channel) - mu2_sq
sigma12 = F.conv2d(y_pred * y_true, window, padding=padd, groups=channel) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, cs
return ret
# Learned Perceptual Image Patch Similarity
class LPIPS(object):
'''
borrowed from https://github.com/huster-wgm/Pytorch-metrics/blob/master/metrics.py
'''
def __init__(self):
self.model = lpips.LPIPS(net='vgg').cuda()
def __call__(self, y_pred, y_true, normalized=True):
"""
args:
y_true : 4-d ndarray in [batch_size, channels, img_rows, img_cols]
y_pred : 4-d ndarray in [batch_size, channels, img_rows, img_cols]
normalized : change [0,1] => [-1,1] (default by LPIPS)
return LPIPS, smaller the better
"""
if normalized:
y_pred = y_pred * 2.0 - 1.0
y_true = y_true * 2.0 - 1.0
error = self.model.forward(y_pred, y_true)
return torch.mean(error)
def read_images_in_dir(imgs_dir):
imgs = []
fnames = os.listdir(imgs_dir)
fnames.sort()
for fname in fnames:
if fname.endswith(".mp4") == True: # ignore canonical space, only evalute real scene
continue
if fname.endswith(".txt") == True: # ignore canonical space, only evalute real scene
continue
img_path = os.path.join(imgs_dir, fname)
# print(img_path)
img = imageio.imread(img_path)
img = (np.array(img) / 255.).astype(np.float32)
img = np.transpose(img, (2, 0, 1))
imgs.append(img)
imgs = np.stack(imgs)
return imgs
def estim_error(estim, gt):
errors = dict()
metric = PSNR()
errors["psnr"] = metric(estim, gt).item()
metric = SSIM()
errors["ssim"] = metric(estim, gt).item()
metric = LPIPS()
errors["lpips"] = metric(estim, gt).item()
return errors
parser = argparse.ArgumentParser()
parser.add_argument('--estim_dir', type = str, default = None , help ='images path')
parser.add_argument('--gt_dir', type = str, default = None ,help ='GT path')
args = parser.parse_args()
psnr_cal = 0
ssim_cal = 0
lpips_cal = 0
scens = ['hellwarrior','mutant','hook','bouncingballs','lego','trex','standup','jumpingjacks']
for str in scens:
estim_dir = args.estim_dir + '/dnerf_'+str+'-400/render_test_fine_last'
gt_dir = args.gt_dir + '/'+str+'/renderonly_test_799999/gt'
estim = read_images_in_dir(estim_dir)
gt = read_images_in_dir(gt_dir)
estim = torch.Tensor(estim).cuda()
gt = torch.Tensor(gt).cuda()
errors = estim_error(estim, gt)
psnr_cal += errors["psnr"]
ssim_cal += errors["ssim"]
lpips_cal += errors["lpips"]
print(str , errors)
print(psnr_cal/8 , ssim_cal/8 , lpips_cal/8)