-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_datasets.py
executable file
·243 lines (224 loc) · 10 KB
/
process_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/env dials.python
# Process multiple microED datasets.
# Author Huw Jenkins 10.05.21
# Last update 28.07.22
import math
import os
import sys
import time
import logging
import json
from libtbx import easy_run, easy_mp, Auto
from dials.array_family import flex
from dxtbx.serialize import load
from dxtbx.util import format_float_with_standard_uncertainty
__version__ = '0.3.5'
class ProcessDataset:
def __init__(self, parameters):
self.parameters = parameters
self.log = logging.getLogger(__name__)
def __call__(self, dataset):
work_dir = os.path.join(os.getcwd(), self.parameters['sample'], f'grid{dataset["grid"]}', f'xtal{dataset["xtal"]:03}')
dataset_id = '/'.join(work_dir.split(os.path.sep)[-3:])
try:
os.makedirs(work_dir)
except FileExistsError:
pass
os.chdir(work_dir)
# already run?
if os.path.isfile('integrated.expt'):
self.log.info(f'Skipping {dataset_id} as file integrated.expt exists')
return self.get_result(dataset_id=dataset_id, experiments='integrated.expt', reflections='indexed.refl', skipped=True)
# import
if dataset.get('template'):
cmd = f'dials.import template=../../../{dataset["template"]} {self.parameters["import"]}'
else:
cmd = f'dials.import ../../../{dataset["file"]} {self.parameters["import"]}'
if dataset.get('image_range'):
cmd += f' image_range={dataset["image_range"]}'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.import.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
if dataset.get('template'):
self.log.info(f'import of {dataset["template"]} failed!')
else:
self.log.info(f'import of {dataset["file"]} failed!')
return
if self.parameters.get('generate_mask') and self.parameters['generate_mask'] != '':
# generate mask
cmd = f'dials.generate_mask imported.expt {self.parameters["generate_mask"]}'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.generate_mask.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
# apply mask
cmd = f'dials.apply_mask imported.expt mask=pixels.mask'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.apply_mask.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
else:
expt = 'masked.expt'
else:
expt = 'imported.expt'
# find spots
cmd = f'dials.find_spots {expt} {self.parameters["find_spots"]} nproc={self.parameters["nproc"]}'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.find_spots.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
# search beam position
if self.parameters.get('search_beam'):
cmd = f'dials.search_beam_position {expt} strong.refl output.experiments=optimised_beam.expt'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.search_beam_position.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
else:
expt = 'optimised_beam.expt'
# find rotation axis
if self.parameters.get('find_rotation_axis'):
cmd = f'dials.find_rotation_axis {expt} strong.refl {self.parameters["find_rotation_axis"]} output.experiments=optimised_axis.expt'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('find_rotation_axis.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
else:
expt = 'optimised_axis.expt'
if self.parameters['spacegroup'] in [None, 'P1']:
# index in P1
cmd = f'dials.index {expt} strong.refl {self.parameters["index"]}'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.index.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
else:
if self.parameters.get('initial_index_P1'):
cmd = f'dials.index {expt} strong.refl {self.parameters["index"]} output.experiments=P1.expt output.reflections=P1.refl output.log=dials.index_P1.log'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.index_P1.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
else:
expt = 'P1.expt'
cmd = f'dials.index {expt} strong.refl {self.parameters["index"]} space_group={self.parameters["spacegroup"]}'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.index.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
if not os.path.isfile('indexed.expt'):
self.log.info(f'{dataset_id} failed to index in space group {self.parameters["spacegroup"]}')
return
# refine (static)
cmd = f'dials.refine indexed.expt indexed.refl {self.parameters["refine"]} scan_varying=false output.experiments=refined_static.expt output.reflections=refined_static.refl'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.refine_static.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
if not os.path.isfile('refined_static.expt'):
self.log.info(f'{dataset_id} failed in intitial refinement')
return
# refine (scan varying)
cmd = f'dials.refine refined_static.expt refined_static.refl {self.parameters["refine"]} scan_varying=true'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.refine.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
if not os.path.isfile('refined.expt'):
self.log.info(f'{dataset_id} failed in scan varying refinement')
return
# integrate
cmd = f'dials.integrate refined.expt refined.refl {self.parameters["integrate"]} nproc={self.parameters["nproc"]}'
r = easy_run.fully_buffered(command=cmd)
if len(r.stderr_lines) > 0:
with open('dials.integrate.err', 'w') as f:
f.write('\n'.join(r.stderr_lines))
if not os.path.isfile('integrated.expt'):
self.log.info(f'{dataset_id} failed in integration')
return
# success
return self.get_result(dataset_id=dataset_id, experiments='integrated.expt', reflections='indexed.refl')
def get_result(self, dataset_id, experiments, reflections, skipped=False):
el = load.experiment_list(experiments)
xtal = el.crystals()[0]
uc = xtal.get_unit_cell().parameters()
uc_sd = xtal.get_cell_parameter_sd()
sg = str(xtal.get_space_group().info())
if not skipped:
unit_cell = [format_float_with_standard_uncertainty(v, e, minimum=1.0e-5) for (v, e) in zip(uc, uc_sd)]
self.log.info(f'{dataset_id} processed successfully {sg} {" ".join(unit_cell)}')
formatted_unit_cell = [f'{v:6.2f}' if e > 1.0e-5 else f'{round(v,0):3.0f}' for (v, e) in zip(uc, uc_sd)]
refl = flex.reflection_table.from_file(reflections)
n_total = len(refl)
refined = refl.get_flags(refl.flags.used_in_refinement)
indexed = refl.get_flags(refl.flags.indexed)
n_indexed = len(refl.select(indexed))
refl = refl.select(refined)
xo, yo, zo = refl["xyzobs.px.value"].parts()
xc, yc, zc = refl["xyzcal.px"].parts()
rmsd_x = math.sqrt(flex.mean(flex.pow2(xo - xc)))
rmsd_y = math.sqrt(flex.mean(flex.pow2(yo - yc)))
rmsd_z = math.sqrt(flex.mean(flex.pow2(zo - zc)))
formatted_rmsds = f'{rmsd_x:8.5f} {rmsd_y:8.5f} {rmsd_z:8.5f}'
return {'dataset_id':dataset_id,
'output_files':[os.path.abspath('integrated.expt'), os.path.abspath('integrated.refl')] if not skipped else [],
'sg':sg,
'uc':formatted_unit_cell,
'total':n_total,
'indexed':n_indexed,
'unindexed':n_total - n_indexed,
'rmsds':formatted_rmsds,
}
def run(datasets_json):
# start logging to stdout
log = logging.getLogger()
log.setLevel(logging.INFO)
fmt = logging.Formatter('%(message)s')
ch = logging.StreamHandler(sys.stdout)
ch.setFormatter(fmt)
log.addHandler(ch)
# and logfile
logfile = 'process_datasets.log'
logfile = os.path.abspath(logfile)
if os.path.isfile(logfile):
os.unlink(logfile)
log.info(f'Writing logfile to {logfile}')
fh = logging.FileHandler(logfile)
fh.setFormatter(fmt)
log.addHandler(fh)
log.info(f'Multi 3DED/microED dataset processor version {__version__}')
log.info(f'Start time: {str(time.asctime(time.localtime(time.time())))}')
# read datasets.json:
try:
with open(datasets_json) as f:
datasets = json.load(f)
except json.decoder.JSONDecodeError as e:
sys.exit(f'Unable to read {datasets_json} Error {e}')
for dataset in datasets['datasets']:
if dataset.get('template'):
log.info(f'Processing dataset {dataset["template"]} as {datasets["parameters"]["sample"]}/grid{dataset["grid"]}/xtal{dataset["xtal"]:03}')
else:
log.info(f'Processing dataset {dataset["file"]} as {datasets["parameters"]["sample"]}/grid{dataset["grid"]}/xtal{dataset["xtal"]:03}')
process_dataset = ProcessDataset(datasets['parameters'])
results = easy_mp.parallel_map(process_dataset,
iterable=datasets['datasets'],
processes = datasets['parameters']['njobs'],
preserve_order=True
)
log.info('Created the following integrated files:')
successful_results = [r for r in results if r is not None]
for r in successful_results:
if len(r['output_files']) > 0:
log.info(f"{r['output_files'][0]} {r['output_files'][1]}")
log.info('Summary of results:')
for r in successful_results:
log.info(f"{r['dataset_id']} {r['sg']} {' '.join(r['uc'])} {r['indexed']:5d} {r['unindexed']:5d} {100*r['indexed']/r['total']:5.1f} {r['rmsds']}")
log.info(f'End time: {str(time.asctime(time.localtime(time.time())))}')
if __name__ == '__main__':
if len(sys.argv) == 1:
sys.exit('Usage process_datasets datasets.json')
datasets_json = sys.argv[1]
if not os.path.isfile(datasets_json):
sys.exit(f'File {datasets_json} does not exist')
run(datasets_json=datasets_json)